Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol o...Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol optical thickness(AOT),and wind speed(WS)in the Bohai Sea were analyzed from the perspective of time domain and frequency domain.Results indicate that the frequency domain analysis was more conducive to revealing the correlations between Chl a and environmental factors.The spatial pattern of time-domain correlations was similar to the isobaths of the Bohai Sea,which was positive in shallow waters and negative in deep waters for SST,PAR,and AOT,and was reversed for WS.Frequency-domain correlations were obtained by performing Fourier Transform and were higher than correlations in time domain.The spatial distributions indicated that the effects of SST and PAR on Chl a were greater than AOT and WS in the Bohai Sea.Additionally,cross-spectrum analysis was applied to explore the response relationships.A depth-dependent pattern was shown in correlations and time lags,indicating that the influential mechanism of environmental factors on Chl-a concentration is related to seawater depth.展开更多
Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20...Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).展开更多
Carbon biomass,carbon-to-chlorophyll a ratio(C꞉Chl a),and the growth rate of phytoplankton cells were studied during four seasonal cruises in 2017 and 2018 in Jiaozhou Bay,China.Water samples were collected from 12 st...Carbon biomass,carbon-to-chlorophyll a ratio(C꞉Chl a),and the growth rate of phytoplankton cells were studied during four seasonal cruises in 2017 and 2018 in Jiaozhou Bay,China.Water samples were collected from 12 stations,and phytoplankton carbon biomass(phyto-C)was estimated from microscope-measured cell volumes.The phyto-C ranged from 5.05 to 78.52μg C/L in the bay,and it constituted a mean of 38.16% of the total particulate organic carbon in the bay.High phyto-C values appeared mostly in the northern or northeastern bay.Diatom carbon was predominant during all four cruises.Dinoflagellate carbon contributed much less(<30%)to the total phyto-C,and high values appeared often in the outer bay.The C꞉Chl a of phytoplankton cells varied from 11.50 to 61.45(mean 31.66),and high values appeared in the outer bay during all four seasons.The phyto-C was also used to calculate the intrinsic growth rates of phytoplankton cells in the bay,and phytoplankton growth rates ranged from 0.56 to 1.96/d;the rate was highest in summer(mean 1.79/d),followed by that in fall(mean 1.24/d)and spring(mean 1.17/d),and the rate was lowest in winter(mean 0.77/d).Temperature and silicate concentration were found to be the determining factors of phytoplankton growth rates in the bay.To our knowledge,this study is the first report on phytoplankton carbon biomass and C꞉Chl a based on water samples in Jiaozhou Bay,and it will provide useful information for studies on carbon-based food web calculations and carbon-based ecosystem models in the bay.展开更多
基金Supported by the Key Research and Development Program of 14 th Five year Plan of China(No.2021YFC3200401-04)the Major Scientific and Technological Projects of Tianjin(No.18 ZXRHSF00270)。
文摘Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol optical thickness(AOT),and wind speed(WS)in the Bohai Sea were analyzed from the perspective of time domain and frequency domain.Results indicate that the frequency domain analysis was more conducive to revealing the correlations between Chl a and environmental factors.The spatial pattern of time-domain correlations was similar to the isobaths of the Bohai Sea,which was positive in shallow waters and negative in deep waters for SST,PAR,and AOT,and was reversed for WS.Frequency-domain correlations were obtained by performing Fourier Transform and were higher than correlations in time domain.The spatial distributions indicated that the effects of SST and PAR on Chl a were greater than AOT and WS in the Bohai Sea.Additionally,cross-spectrum analysis was applied to explore the response relationships.A depth-dependent pattern was shown in correlations and time lags,indicating that the influential mechanism of environmental factors on Chl-a concentration is related to seawater depth.
基金Supported by the Fundamental Research Funds for the Central Universities(Nos.202341017,202313024)。
文摘Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).
基金Supported by the National Natural Science Foundation of China(Nos.31700425,91751202)the External Cooperation Program of Chinese Academy of Sciences(No.133137KYSB20200002)the Taishan Scholars Project to Song SUN。
文摘Carbon biomass,carbon-to-chlorophyll a ratio(C꞉Chl a),and the growth rate of phytoplankton cells were studied during four seasonal cruises in 2017 and 2018 in Jiaozhou Bay,China.Water samples were collected from 12 stations,and phytoplankton carbon biomass(phyto-C)was estimated from microscope-measured cell volumes.The phyto-C ranged from 5.05 to 78.52μg C/L in the bay,and it constituted a mean of 38.16% of the total particulate organic carbon in the bay.High phyto-C values appeared mostly in the northern or northeastern bay.Diatom carbon was predominant during all four cruises.Dinoflagellate carbon contributed much less(<30%)to the total phyto-C,and high values appeared often in the outer bay.The C꞉Chl a of phytoplankton cells varied from 11.50 to 61.45(mean 31.66),and high values appeared in the outer bay during all four seasons.The phyto-C was also used to calculate the intrinsic growth rates of phytoplankton cells in the bay,and phytoplankton growth rates ranged from 0.56 to 1.96/d;the rate was highest in summer(mean 1.79/d),followed by that in fall(mean 1.24/d)and spring(mean 1.17/d),and the rate was lowest in winter(mean 0.77/d).Temperature and silicate concentration were found to be the determining factors of phytoplankton growth rates in the bay.To our knowledge,this study is the first report on phytoplankton carbon biomass and C꞉Chl a based on water samples in Jiaozhou Bay,and it will provide useful information for studies on carbon-based food web calculations and carbon-based ecosystem models in the bay.