[Objectives]Protein energy ratio refers to the proportional relationship between protein and energy levels in animal diets,i.e.,the grams of crude protein corresponding to every megacalorie of energy,which is generall...[Objectives]Protein energy ratio refers to the proportional relationship between protein and energy levels in animal diets,i.e.,the grams of crude protein corresponding to every megacalorie of energy,which is generally expressed as CP:ME or CP:DE.This study was conducted to investigate the effects of different diets on fattening and slaughter performance and meat quality traits for"L(Large Yorkshire)×L(Landrace)"crossbred pigs.[Methods]Eighteen piglets of L×L crossbred with similar body weights about 51 kg were selected.The piglets were divided into 3 groups randomly and each group was assigned to 3 replicates with 2 piglets in a replicate.Group A was fed diet Ⅰ (control diet),group B was fed the same diet of group A in the first month of the trial but fed diet Ⅱ in second month,and group C consumed diet Ⅲ.All the pigs were fed in the same feeding condition for two months except the different diets during the trial.One pig in similar body weight from each replicate was slaughtered for the determination of slaughter performance and meat quality traits in the end of the trial.[Results]The average daily feed intake(ADFI)of pigs from group B was only(2.32±0.52)kg and significantly lower than those from group A and group C(P<0.05),but no difference was found in average daily gain(ADG) and feed/gain(P>0.05).Also,no differences occurred in the carcass length,back fat thickness,longissimus muscle (LM) area and dressing percentage(P>0.05).In addition,no differences were found in the meat quality traits of shear force,meat color,pH_(45 min),pH_(24 h) and cooking loss(P>0.05).However,the water-holding capacity of meat from group C was(2.58±0.02)ms and significantly lower than that of(2.80±0.20)ms from group A(P<0.05).Although the contents of glutamic acid and cystine in LM from group B was significantly lower than those from group A and group C(P<0.05),no differences occurred in the contents of other amino acids,the total amino acid and total flavor amino acid among the three groups(P>0.05).However,the inosine monophosphate content of LM from group C was only(331.80±11.53)mg/100 g and significantly lower than those of(361.00±6.36)and(366.37±4.80)mg/100 g from group A and B(P<0.05).Even though no differences were found in the contents of DM and CP in LM among the three groups of pigs,the content of intramuscular fat(IMF)in LM from group B and group C was increased by 45.6%and 46.58%respectively from that of group A(P<0.05),but no difference occurred between group B and C(P>0.05).[Conclusions]DietsⅡ and Ⅲ in this study caused no differences in fattening and slaughter performance of L×L crossbred pigs,but the effects on some meat traits were still significant,especially on the improvement of intramuscular fat in experimental pigs.Therefore,they could improve the meat quality of crossbred pigs to a certain extent.展开更多
Background: The protein/energy ratio is important for the production performance and utilization of available feed resources by animals. Increased protein consumption by mammals leads to elevated feed costs and incre...Background: The protein/energy ratio is important for the production performance and utilization of available feed resources by animals. Increased protein consumption by mammals leads to elevated feed costs and increased nitrogen release into the environment. This study aimed to evaluate the effects of dietary protein/energy ratio on the growth performance, carcass traits, meat quality, and plasma metabolites of pigs of different genotypes. Methods: Bama mini-pigs and Landrace pigs were randomly assigned to two dietary treatment groups (Chinese conventional diet with low protein/energy ratio or National Research Council diet with high protein/energy ratio; n = 24 per treatment) in a 2 x 2 factorial arrangement. Blood and muscle samples were collected at the end of the nursery, growing, and finishing phases. Results: We observed significant interactions (P 〈 0.05) between breed and diet for total fat percentage, intramuscular fat (IMF) content, protein content in biceps femoris (BF) muscle, and plasma urea nitrogen (UN) concentration in the nursery phase; for average daily gain (ADG), average daily feed intake (ADFI), dry matter, IMF content in psoas major (PM) muscle, and plasma total protein and albumin concentrations in the growing phase; and for drip loss and plasma UN concentration in the finishing phase. Breed influenced (P 〈 0.05) growth performance, carcass traits, and meat quality, but not plasma metabolites. Throughout the trial, Landrace pigs showed significantly higher (P 〈 0.0_5) ADG, ADFI, dressing percentage, lean mass rate, and loin-eye area than did Bama mini-pigs, but significantly lower (P 〈 0.0.5) feed/gain ratio, fat percentage, backfat thickness, and IMF content. Dietary protein/energy ratio influenced the pH value, chemical composition of BF and PM muscles, and plasma activities of glutamic-pyruvic transaminase and gamma-glutamyl transpeptidase, and plasma concentration of UN. Conclusions: Compared with Landrace pigs, Bama mini-pigs showed slower growth and lower carcass performance, but had better meat quality. Moreover, unlike Landrace pigs, the dietary protein/energy ratio did not affect the growth performance of Bama mini-pigs. These results suggest that, in swine production, low dietary protein/energy ratio may be useful for reducing feed costs and minimizing the adverse effects of ammonia release into the environment.展开更多
Background: To investigate the effects of dietary crude protein(CP) restriction on muscle fiber characteristics and key regulators related to protein deposition in skeletal muscle, a total of 18 growing-finishing p...Background: To investigate the effects of dietary crude protein(CP) restriction on muscle fiber characteristics and key regulators related to protein deposition in skeletal muscle, a total of 18 growing-finishing pigs(62.30 ± 0.88 kg)were allotted to 3 groups and fed with the recommended adequate protein(AP, 16 % CP) diet, moderately restricted protein(MP, 13 % CP) diet and low protein(LP, 10 % CP) diet, respectively. The skeletal muscle of different locations in pigs, including longissimus dorsi muscle(LDM), psoas major muscle(PMM) and biceps femoris muscle(BFM) were collected and analyzed.Results: Results showed that growing-finishing pigs fed the MP or AP diet improved(P 〈 0.01) the average daily gain and feed: gain ratio compared with those fed the LP diet, and the MP diet tended to increase(P = 0.09) the weight of LDM. Moreover, the ATP content and energy charge value were varied among muscle samples from different locations of pigs fed the reduced protein diets. We also observed that pigs fed the MP diet up-regulated(P 〈 0.05) muscular m RNA expression of all the selected key genes, except that myosin heavy chain(My HC) IIb,My HC IIx, while m RNA expression of ubiquitin ligases genes was not affected by dietary CP level. Additionally, the activation of mammalian target of rapamycin complex 1(m TORC1) pathway was stimulated(P 〈 0.05) in skeletal muscle of the pigs fed the MP or AP diet compared with those fed the LP diet.Conclusion: The results suggest that the pigs fed the MP diet could catch up to the growth performance and the LDM weight of the pigs fed the AP diet, and the underlying mechanism may be partly due to the alteration in energy status, modulation of muscle fiber characteristics and m TORC1 activation as well as its downstream effectors in skeletal muscle of different locations in growing-finishing pigs.展开更多
An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the ef fects of protein to energy ratio on growth, for the rare minnow( Gobiocypris rarus), which are critical to nutr...An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the ef fects of protein to energy ratio on growth, for the rare minnow( Gobiocypris rarus), which are critical to nutrition standardization for model fi sh. Twenty-four diets were formulated to contain three gross energy(10, 12.5, 15 kJ/g), four protein(20%, 25%, 30%, 35%), and two lipid levels(3%, 6%). The results showed that optimal dietary E/P was 41.7–50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specifi c growth rate(SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ /g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing eff ect. Optimal protein decreased from 35% to 25%–30% with an increase in dietary lipid from 3% to 6% without adversely ef fecting growth. Dietary lipid level af fects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%–35% and 10–12.5 k J/g, respectively.展开更多
AIM: To characterise the effect of energy restriction (ER) on liver lipid and primary metabolite profile by using metabolomic approach. We also investigated whether the effect of energy restriction can be further e...AIM: To characterise the effect of energy restriction (ER) on liver lipid and primary metabolite profile by using metabolomic approach. We also investigated whether the effect of energy restriction can be further enhanced by modification of dietary protein source and calcium. METHODS: Liver metabolomic profile of lean and obese C57BI/6J mice (n = 10/group) were compared with two groups of weight-reduced mice. ER was performed on control diet and whey protein-based high-calcium diet (whey + Ca). The metabolomic analyses were performed using the UPLC/MS based lipidomic platform and the HPLC/MS/MS based primary metabolite platform.RESULTS: ER on both diets significantly reduced hepatic lipid accumulation and lipid droplet size, while only whey + Ca diet significantly decreased blood glucose (P 〈 0.001) and serum insulin (P 〈 0.01). In hepatic lipid species the biggest reduction was in the level of triacylglycerols and cerarnides while the level of cholesterol esters was significantly increased during ER. Interestingly, diacylglycerol to phospholipid ratio, an indicator of relative amount of diabetogenic diglyceride species, was increased in the control ER group, but decreased in the whey + Ca ER group (P 〈 0.001, vs obese). ER on whey + Ca diet also totally reversed the obesity induced increase in the relative level of lipotoxic cerarnides (P 〈 0.001, vs obese; P 〉 0.05, vs lean). These changes were accompanied with up-regulated TCA cycle and pentose phosphate pathway rnetabolites. CONCLUSION: ER-induced changes on hepatic rnetabolornic profile can be significantly affected by dietary protein source. The therapeutic potential of whey protein and calcium should be further studied.展开更多
目的探讨中性粒细胞与淋巴细胞比值(neutrophil/lymphocyte ratio,NLR)、血小板与淋巴细胞比值(platelet/lymphocyte ratio,PLR)、脂蛋白相关磷脂酶A2(lipoprotein phospholipase A2,Lp-PLA2)在维持性血液透析(maintenance hemodialysis...目的探讨中性粒细胞与淋巴细胞比值(neutrophil/lymphocyte ratio,NLR)、血小板与淋巴细胞比值(platelet/lymphocyte ratio,PLR)、脂蛋白相关磷脂酶A2(lipoprotein phospholipase A2,Lp-PLA2)在维持性血液透析(maintenance hemodialysis,MHD)患者蛋白质能量消耗(protein energy wasting,PEW)的联合诊断价值。方法收集泰州市人民医院327例接受MHD治疗患者临床资料,根据国际肾脏营养和代谢学会(international society of renal nutrition and metabolism,ISRNM)诊断标准,将MHD患者分为PEW组和非PEW组。探索NLR、PLR、Lp-PLA2在MHD患者PEW诊断中的应用价值。结果327例患者中有101例患者发生PEW,发生率为31%。PEW组患者体质量指数(body mass index,BMI)、白蛋白、前白蛋白、总胆固醇、肌酐、尿酸水平均低于非PEW组患者(Z/t=-5.358、-8.147、-5.363、-2.297、-4.168、-2.326,P<0.001、<0.001、<0.001、0.022、<0.001、0.020),年龄、NLR、PLR、Lp-PLA2水平均高于非PEW组(Z/t=-2.753、-5.588、-4.672、-9.269,P=0.006、<0.001、<0.001、<0.001)。多因素二元Logistic逐步回归方程分析结果显示NLR(OR=1.094,95%CI:1.004~1.192,P=0.041)、PLR(OR=1.021,95%CI:1.009~1.033,P<0.001)、Lp-PLA2(OR=1.085,95%CI:1.056~1.114,P<0.001)水平是血液透析患者发生PEW的独立风险因子。NLR(95%CI:0.631~0.756,P<0.001)、PLR(95%CI:0.597~0.726,P<0.001)、Lp-PLA2(95%CI:0.735~0.841,P<0.001)、NLR联合PLR(95%CI:0.650~0.775,P<0.001)、NLR联合Lp-PLA2(95%CI:0.800~0.889,P<0.001)、PLR联合Lp-PLA2(95%CI:0.782~0.875,P<0.001)、NLR联合PLR及Lp-PLA2(95%CI:0.809~0.895,P<0.001)在ROC曲线下面积分别为0.693、0.662、0.788、0.713、0.844、0.829、0.852,NLR、PLR、Lp-PLA2均对MHD患者发生PEW具有一定的诊断价值,且当三者联合时ROC曲线下面积为0.852(95%CI:0.809~0.895,P<0.001),诊断效能最大。结论NLR、PLR、Lp-PLA2水平可作为MHD患者发生PEW的参考指标,加强对NLR、PLR、Lp-PLA2水平的联合监测可为PEW的诊断及治疗提供干预证据。展开更多
OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. Th...OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. The following terms were used:(“Paralysis agitans” OR “Parkinson disease” OR “Parkinson” OR “Parkinson’s” OR “Parkinson’s disease”) AND (“fat” OR “dietary fat” OR “dietary fat intake”). DATA SELECTION: Included studies were those with both dietary fat intake and Parkinson’s disease risk as exposure factors. The Newcastle-Ottawa Scale was adapted to investigate the quality of included studies. Stata V12.0 software was used for statistical analysis. OUTCOME MEASURES: The primary outcomes included the relationship between high total energy intake, high total fat intake, and Parkinson’s disease risk. The secondary outcomes included the relationship between different kinds of fatty acids and Parkinson’s disease risk. RESULTS: Nine articles met the inclusion criteria and were incorporated into this meta-analysis. Four studies scored 7 and the other five studies scored 9 on the Newcastle-Ottawa Scale, meaning that all studies were of high quality. Meta-analysis results showed that high total energy intake was associated with an increased risk of Parkinson’s disease (P = 0.000, odds ratio (OR)= 1.49, 95% confidence interval (CI): 1.26–1.75);in contrast, high total fat intake was not associated with Parkinson’s disease risk (P = 0.123, OR = 1.07, 95% CI: 0.91–1.25). Subgroup analysis revealed that polyunsaturated fatty acid intake (P = 0.010, OR = 1.03, 95% CI: 0.88–1.20) reduced the risk of Parkinson’s disease, while arachidonic acid (P = 0.026, OR = 1.15, 95% CI: 0.97–1.37) and cholesterol (P = 0.002, OR = 1.09, 95% CI: 0.92–1.29) both increased the risk of Parkinson’s disease. Subgroup analysis also demonstrated that, although the results were not significant, consumption of n-3 polyunsaturated fatty acids (P = 0.071, OR = 0.88, 95% CI: 0.73–1.05),α-linolenic acid (P = 0.06, OR = 0.86, 95% CI: 0.72–1.02), and the n-3 to n-6 ratio (P = 0.458, OR = 0.89, 95% CI: 0.75–1.06) were all linked with a trend toward reduced Parkinson’s disease risk. Monounsaturated fatty acid (P = 0.450, OR = 1.06, 95% CI: 0.91–1.23), n-6 polyunsaturated fatty acids (P = 0.100, OR = 1.15, 95% CI: 0.96–1.36) and linoleic acid (P = 0.053, OR = 1.11, 95% CI: 0.94–1.32) intakes were associated with a non-significant trend toward higher PD risk. Saturated fatty acid (P = 0.619, OR = 1.01, 95% CI: 0.87–1.18) intake was not associated with Parkinson’s disease. CONCLUSION: Dietary fat intake affects Parkinson’s disease risk, although this depends on the fatty acid subtype. Higher intake of polyunsaturated fatty acids may reduce the risk of Parkinson’s disease, while higher cholesterol and arachidonic acid intakes may elevate Parkinson’s disease risk. However, further studies and evidence are needed to validate any link between dietary fat intake and Parkinson’s disease.展开更多
基金Supported by Guangxi Agricultural Science and Technology Self-financing Project(Z2022114,Z2022111)。
文摘[Objectives]Protein energy ratio refers to the proportional relationship between protein and energy levels in animal diets,i.e.,the grams of crude protein corresponding to every megacalorie of energy,which is generally expressed as CP:ME or CP:DE.This study was conducted to investigate the effects of different diets on fattening and slaughter performance and meat quality traits for"L(Large Yorkshire)×L(Landrace)"crossbred pigs.[Methods]Eighteen piglets of L×L crossbred with similar body weights about 51 kg were selected.The piglets were divided into 3 groups randomly and each group was assigned to 3 replicates with 2 piglets in a replicate.Group A was fed diet Ⅰ (control diet),group B was fed the same diet of group A in the first month of the trial but fed diet Ⅱ in second month,and group C consumed diet Ⅲ.All the pigs were fed in the same feeding condition for two months except the different diets during the trial.One pig in similar body weight from each replicate was slaughtered for the determination of slaughter performance and meat quality traits in the end of the trial.[Results]The average daily feed intake(ADFI)of pigs from group B was only(2.32±0.52)kg and significantly lower than those from group A and group C(P<0.05),but no difference was found in average daily gain(ADG) and feed/gain(P>0.05).Also,no differences occurred in the carcass length,back fat thickness,longissimus muscle (LM) area and dressing percentage(P>0.05).In addition,no differences were found in the meat quality traits of shear force,meat color,pH_(45 min),pH_(24 h) and cooking loss(P>0.05).However,the water-holding capacity of meat from group C was(2.58±0.02)ms and significantly lower than that of(2.80±0.20)ms from group A(P<0.05).Although the contents of glutamic acid and cystine in LM from group B was significantly lower than those from group A and group C(P<0.05),no differences occurred in the contents of other amino acids,the total amino acid and total flavor amino acid among the three groups(P>0.05).However,the inosine monophosphate content of LM from group C was only(331.80±11.53)mg/100 g and significantly lower than those of(361.00±6.36)and(366.37±4.80)mg/100 g from group A and B(P<0.05).Even though no differences were found in the contents of DM and CP in LM among the three groups of pigs,the content of intramuscular fat(IMF)in LM from group B and group C was increased by 45.6%and 46.58%respectively from that of group A(P<0.05),but no difference occurred between group B and C(P>0.05).[Conclusions]DietsⅡ and Ⅲ in this study caused no differences in fattening and slaughter performance of L×L crossbred pigs,but the effects on some meat traits were still significant,especially on the improvement of intramuscular fat in experimental pigs.Therefore,they could improve the meat quality of crossbred pigs to a certain extent.
基金supported by the National Basic Research Program of China(No.2012CB124704 and 2013CB127305)KC.Wong Education Foundation,Hong Kong
文摘Background: The protein/energy ratio is important for the production performance and utilization of available feed resources by animals. Increased protein consumption by mammals leads to elevated feed costs and increased nitrogen release into the environment. This study aimed to evaluate the effects of dietary protein/energy ratio on the growth performance, carcass traits, meat quality, and plasma metabolites of pigs of different genotypes. Methods: Bama mini-pigs and Landrace pigs were randomly assigned to two dietary treatment groups (Chinese conventional diet with low protein/energy ratio or National Research Council diet with high protein/energy ratio; n = 24 per treatment) in a 2 x 2 factorial arrangement. Blood and muscle samples were collected at the end of the nursery, growing, and finishing phases. Results: We observed significant interactions (P 〈 0.05) between breed and diet for total fat percentage, intramuscular fat (IMF) content, protein content in biceps femoris (BF) muscle, and plasma urea nitrogen (UN) concentration in the nursery phase; for average daily gain (ADG), average daily feed intake (ADFI), dry matter, IMF content in psoas major (PM) muscle, and plasma total protein and albumin concentrations in the growing phase; and for drip loss and plasma UN concentration in the finishing phase. Breed influenced (P 〈 0.05) growth performance, carcass traits, and meat quality, but not plasma metabolites. Throughout the trial, Landrace pigs showed significantly higher (P 〈 0.0_5) ADG, ADFI, dressing percentage, lean mass rate, and loin-eye area than did Bama mini-pigs, but significantly lower (P 〈 0.0.5) feed/gain ratio, fat percentage, backfat thickness, and IMF content. Dietary protein/energy ratio influenced the pH value, chemical composition of BF and PM muscles, and plasma activities of glutamic-pyruvic transaminase and gamma-glutamyl transpeptidase, and plasma concentration of UN. Conclusions: Compared with Landrace pigs, Bama mini-pigs showed slower growth and lower carcass performance, but had better meat quality. Moreover, unlike Landrace pigs, the dietary protein/energy ratio did not affect the growth performance of Bama mini-pigs. These results suggest that, in swine production, low dietary protein/energy ratio may be useful for reducing feed costs and minimizing the adverse effects of ammonia release into the environment.
基金financially supported by the National Basic Research Program of China(2013CB127305)the Nature Science Foundation of Hunan Province(S2014J504I)+1 种基金the Major Project of Hunan Province(2015NK1002)the National Science and Technology Ministry(2014BAD08B11)
文摘Background: To investigate the effects of dietary crude protein(CP) restriction on muscle fiber characteristics and key regulators related to protein deposition in skeletal muscle, a total of 18 growing-finishing pigs(62.30 ± 0.88 kg)were allotted to 3 groups and fed with the recommended adequate protein(AP, 16 % CP) diet, moderately restricted protein(MP, 13 % CP) diet and low protein(LP, 10 % CP) diet, respectively. The skeletal muscle of different locations in pigs, including longissimus dorsi muscle(LDM), psoas major muscle(PMM) and biceps femoris muscle(BFM) were collected and analyzed.Results: Results showed that growing-finishing pigs fed the MP or AP diet improved(P 〈 0.01) the average daily gain and feed: gain ratio compared with those fed the LP diet, and the MP diet tended to increase(P = 0.09) the weight of LDM. Moreover, the ATP content and energy charge value were varied among muscle samples from different locations of pigs fed the reduced protein diets. We also observed that pigs fed the MP diet up-regulated(P 〈 0.05) muscular m RNA expression of all the selected key genes, except that myosin heavy chain(My HC) IIb,My HC IIx, while m RNA expression of ubiquitin ligases genes was not affected by dietary CP level. Additionally, the activation of mammalian target of rapamycin complex 1(m TORC1) pathway was stimulated(P 〈 0.05) in skeletal muscle of the pigs fed the MP or AP diet compared with those fed the LP diet.Conclusion: The results suggest that the pigs fed the MP diet could catch up to the growth performance and the LDM weight of the pigs fed the AP diet, and the underlying mechanism may be partly due to the alteration in energy status, modulation of muscle fiber characteristics and m TORC1 activation as well as its downstream effectors in skeletal muscle of different locations in growing-finishing pigs.
基金Supported by the National Key Technology R&D Program of China(No.2011BAI15B01-41)the National High Technology Research and Development Program of China(863 Program)(No.2012AA06A302)
文摘An 8-week feeding trial was conducted to detect the optimal dietary protein and energy, as well as the ef fects of protein to energy ratio on growth, for the rare minnow( Gobiocypris rarus), which are critical to nutrition standardization for model fi sh. Twenty-four diets were formulated to contain three gross energy(10, 12.5, 15 kJ/g), four protein(20%, 25%, 30%, 35%), and two lipid levels(3%, 6%). The results showed that optimal dietary E/P was 41.7–50 kJ/g for maximum growth in juvenile rare minnows at 6% dietary crude lipid. At 3% dietary lipid, specifi c growth rate(SGR) increased markedly when E/P decreased from 62.5 kJ/g to 35.7 kJ/g and gross energy was 12.5 kJ/g, and from 75 kJ/g to 42.9 kJ/g when gross energy was 15.0 kJ/g. The optimal gross energy was estimated at 12.5 kJ /g and excess energy decreased food intake and growth. Dietary lipid exhibited an apparent protein-sparing eff ect. Optimal protein decreased from 35% to 25%–30% with an increase in dietary lipid from 3% to 6% without adversely ef fecting growth. Dietary lipid level af fects the optimal dietary E/P ratio. In conclusion, recommended dietary protein and energy for rare minnow are 20%–35% and 10–12.5 k J/g, respectively.
基金Foundation for Nutrition Research, Academy of Finland, Sigrid Juselius Foundation and Valio Ltd., Helsinki, Finland
文摘AIM: To characterise the effect of energy restriction (ER) on liver lipid and primary metabolite profile by using metabolomic approach. We also investigated whether the effect of energy restriction can be further enhanced by modification of dietary protein source and calcium. METHODS: Liver metabolomic profile of lean and obese C57BI/6J mice (n = 10/group) were compared with two groups of weight-reduced mice. ER was performed on control diet and whey protein-based high-calcium diet (whey + Ca). The metabolomic analyses were performed using the UPLC/MS based lipidomic platform and the HPLC/MS/MS based primary metabolite platform.RESULTS: ER on both diets significantly reduced hepatic lipid accumulation and lipid droplet size, while only whey + Ca diet significantly decreased blood glucose (P 〈 0.001) and serum insulin (P 〈 0.01). In hepatic lipid species the biggest reduction was in the level of triacylglycerols and cerarnides while the level of cholesterol esters was significantly increased during ER. Interestingly, diacylglycerol to phospholipid ratio, an indicator of relative amount of diabetogenic diglyceride species, was increased in the control ER group, but decreased in the whey + Ca ER group (P 〈 0.001, vs obese). ER on whey + Ca diet also totally reversed the obesity induced increase in the relative level of lipotoxic cerarnides (P 〈 0.001, vs obese; P 〉 0.05, vs lean). These changes were accompanied with up-regulated TCA cycle and pentose phosphate pathway rnetabolites. CONCLUSION: ER-induced changes on hepatic rnetabolornic profile can be significantly affected by dietary protein source. The therapeutic potential of whey protein and calcium should be further studied.
文摘目的探讨中性粒细胞与淋巴细胞比值(neutrophil/lymphocyte ratio,NLR)、血小板与淋巴细胞比值(platelet/lymphocyte ratio,PLR)、脂蛋白相关磷脂酶A2(lipoprotein phospholipase A2,Lp-PLA2)在维持性血液透析(maintenance hemodialysis,MHD)患者蛋白质能量消耗(protein energy wasting,PEW)的联合诊断价值。方法收集泰州市人民医院327例接受MHD治疗患者临床资料,根据国际肾脏营养和代谢学会(international society of renal nutrition and metabolism,ISRNM)诊断标准,将MHD患者分为PEW组和非PEW组。探索NLR、PLR、Lp-PLA2在MHD患者PEW诊断中的应用价值。结果327例患者中有101例患者发生PEW,发生率为31%。PEW组患者体质量指数(body mass index,BMI)、白蛋白、前白蛋白、总胆固醇、肌酐、尿酸水平均低于非PEW组患者(Z/t=-5.358、-8.147、-5.363、-2.297、-4.168、-2.326,P<0.001、<0.001、<0.001、0.022、<0.001、0.020),年龄、NLR、PLR、Lp-PLA2水平均高于非PEW组(Z/t=-2.753、-5.588、-4.672、-9.269,P=0.006、<0.001、<0.001、<0.001)。多因素二元Logistic逐步回归方程分析结果显示NLR(OR=1.094,95%CI:1.004~1.192,P=0.041)、PLR(OR=1.021,95%CI:1.009~1.033,P<0.001)、Lp-PLA2(OR=1.085,95%CI:1.056~1.114,P<0.001)水平是血液透析患者发生PEW的独立风险因子。NLR(95%CI:0.631~0.756,P<0.001)、PLR(95%CI:0.597~0.726,P<0.001)、Lp-PLA2(95%CI:0.735~0.841,P<0.001)、NLR联合PLR(95%CI:0.650~0.775,P<0.001)、NLR联合Lp-PLA2(95%CI:0.800~0.889,P<0.001)、PLR联合Lp-PLA2(95%CI:0.782~0.875,P<0.001)、NLR联合PLR及Lp-PLA2(95%CI:0.809~0.895,P<0.001)在ROC曲线下面积分别为0.693、0.662、0.788、0.713、0.844、0.829、0.852,NLR、PLR、Lp-PLA2均对MHD患者发生PEW具有一定的诊断价值,且当三者联合时ROC曲线下面积为0.852(95%CI:0.809~0.895,P<0.001),诊断效能最大。结论NLR、PLR、Lp-PLA2水平可作为MHD患者发生PEW的参考指标,加强对NLR、PLR、Lp-PLA2水平的联合监测可为PEW的诊断及治疗提供干预证据。
基金supported by the National Natural Science Foundation of China,No.31200868(to XC)
文摘OBJECTIVE: To assess whether dietary fat intake influences Parkinson’s disease risk. DATA SOURCES: We systematically surveyed the Embase and PubMed databases, reviewing manuscripts published prior to October 2018. The following terms were used:(“Paralysis agitans” OR “Parkinson disease” OR “Parkinson” OR “Parkinson’s” OR “Parkinson’s disease”) AND (“fat” OR “dietary fat” OR “dietary fat intake”). DATA SELECTION: Included studies were those with both dietary fat intake and Parkinson’s disease risk as exposure factors. The Newcastle-Ottawa Scale was adapted to investigate the quality of included studies. Stata V12.0 software was used for statistical analysis. OUTCOME MEASURES: The primary outcomes included the relationship between high total energy intake, high total fat intake, and Parkinson’s disease risk. The secondary outcomes included the relationship between different kinds of fatty acids and Parkinson’s disease risk. RESULTS: Nine articles met the inclusion criteria and were incorporated into this meta-analysis. Four studies scored 7 and the other five studies scored 9 on the Newcastle-Ottawa Scale, meaning that all studies were of high quality. Meta-analysis results showed that high total energy intake was associated with an increased risk of Parkinson’s disease (P = 0.000, odds ratio (OR)= 1.49, 95% confidence interval (CI): 1.26–1.75);in contrast, high total fat intake was not associated with Parkinson’s disease risk (P = 0.123, OR = 1.07, 95% CI: 0.91–1.25). Subgroup analysis revealed that polyunsaturated fatty acid intake (P = 0.010, OR = 1.03, 95% CI: 0.88–1.20) reduced the risk of Parkinson’s disease, while arachidonic acid (P = 0.026, OR = 1.15, 95% CI: 0.97–1.37) and cholesterol (P = 0.002, OR = 1.09, 95% CI: 0.92–1.29) both increased the risk of Parkinson’s disease. Subgroup analysis also demonstrated that, although the results were not significant, consumption of n-3 polyunsaturated fatty acids (P = 0.071, OR = 0.88, 95% CI: 0.73–1.05),α-linolenic acid (P = 0.06, OR = 0.86, 95% CI: 0.72–1.02), and the n-3 to n-6 ratio (P = 0.458, OR = 0.89, 95% CI: 0.75–1.06) were all linked with a trend toward reduced Parkinson’s disease risk. Monounsaturated fatty acid (P = 0.450, OR = 1.06, 95% CI: 0.91–1.23), n-6 polyunsaturated fatty acids (P = 0.100, OR = 1.15, 95% CI: 0.96–1.36) and linoleic acid (P = 0.053, OR = 1.11, 95% CI: 0.94–1.32) intakes were associated with a non-significant trend toward higher PD risk. Saturated fatty acid (P = 0.619, OR = 1.01, 95% CI: 0.87–1.18) intake was not associated with Parkinson’s disease. CONCLUSION: Dietary fat intake affects Parkinson’s disease risk, although this depends on the fatty acid subtype. Higher intake of polyunsaturated fatty acids may reduce the risk of Parkinson’s disease, while higher cholesterol and arachidonic acid intakes may elevate Parkinson’s disease risk. However, further studies and evidence are needed to validate any link between dietary fat intake and Parkinson’s disease.