This paper discussed and summarized the parasitic characters and the protection and utilization of 7 species of dominant natural enemies of sugarcane pests in Yunnan, China. Sugarcane pests are numerous and there are ...This paper discussed and summarized the parasitic characters and the protection and utilization of 7 species of dominant natural enemies of sugarcane pests in Yunnan, China. Sugarcane pests are numerous and there are rich natural enemy resources in Yunnan sugarcane areas. There are more than 283 species of natural enemies against sugarcane pests in Yunnan, among which the dominant natural enemies with protection and utilization value and research significance include Trichogramma, Apanteles flavipes(Cameron) and Sturmiopsis inferens Townsend parasitic on sugarcane borers, Synonycha grandis(Thunberg), Lemnia biplagiata(Swartz), Chilomenes sexmaculata(Fabricius) and Thiallela sp catching and feeding on Ceratovacuna lanigera Zehntner, and Euborellia pallipes Shiraki preying on Saccharicocus sacchari(Cocherell), Dysmicoccus bohinsis Kuw, Trochorhopalus humeralis Chevrolat and Diocalandra sp. There is also one fungal parasite, namely Beauveria bassiana, which is widely distributed in nature, and can parasitize in a variety of sugarcane pests including sugarcane borers, Exolontha serrulata(Gyllenhal), Alissonotum impressicolle Arrow, T. humeralis and Otidognathus rubriceps Chevrola. It has a natural parasitism rate generally around 10% and certain natural inhibition effect on sugarcane pests. Reasonably protecting and utilizing natural enemies and giving full play to the natural regulation of natural enemies on pests are of great significance for protecting the ecological environment, maintaining the ecological balance of sugarcane fields, improving the comprehensive management level of pests, and promoting the sustainable development of sugar industry.展开更多
Field studies were conducted at Hisar during Kharif, 2009-2010 and 2010-2011 under natural and unsprayed condition. RCH 134 Bt, HS 6 (non Bt), H 1117 and Ganganagar Ageti (non Bt) were selected for the studies. The ex...Field studies were conducted at Hisar during Kharif, 2009-2010 and 2010-2011 under natural and unsprayed condition. RCH 134 Bt, HS 6 (non Bt), H 1117 and Ganganagar Ageti (non Bt) were selected for the studies. The experiment was laid down in Randomized Block Design replicated thrice having plant spacing 67.5 × 60 cm. Among the bollworms, Erias spp. exhibited positive correlation with rainfall, minimum temperature and relative humidity morning hours significantly at 5 percent level whereas Helicoverpa and Pectinophora displayed positive relations only with evening hours relative humidity significantly while Spodoptera were significantly positive correlated with relative humidity of morning and evening hours. Bollworm complex was negatively correlated with all the weather parameters employed to study although being non-significant in case of rainfall, maximum and minimum of temperature, morning and evening hours of relative humidity. Among the sucking pests, leafhoppers, whitefly, thrips and aphids population showed significantly negative correlation with weather parameters. The comparison of natural bio-agents in cotton hybrids under study revealed that overall mean population of natural enemies were higher in Bt cotton hybrid as compared to non-Bt. These results confirm that use of genetically modified (Bt) cotton in lieu of conventional genotypes could positively impact non-target and beneficial insect species by preserving their host populations.展开更多
In agriculture, chemical insecticides are widely used to protect crops from insect pests. Over a period of years, some insects such as Colorado potato beetle (CPB) succeed in developing resistance to most of the reg...In agriculture, chemical insecticides are widely used to protect crops from insect pests. Over a period of years, some insects such as Colorado potato beetle (CPB) succeed in developing resistance to most of the registered chemical insecticides. Consequently, heavy applications of chemical insecticides to control this pest become ineffective on a long-term basis and can lead to serious health and environmental problems. The use of natural enemies to control CPB is an interesting alternative to chemical means However, hand release of predators is not feasible on a large scale in the field. The main objective of this research study was to design and build a test bench to investigate the technical feasibility of mechanically releasing predators. The test bench consisted of a vertical chain conveyor mounted on two vertical shafts driven by an electric motor. Since the predators are small and fragile, they were placed in a specially designed container to preserve their physical integrity. Trials using this test bench showed that a carrier material was required, because most of the predators remained inside the container. The success of this mass predator release system will be highly valuable for the biological control of insect pests in many crops.展开更多
The prey-seeking behavior of three spiders (X1-Pirata subpiraticus, X2-Clubiona japonicola and X3-Tetragnatha japonica) for brown plant hopper (X4-Nilaparvata lugens) and rice spittle bug (X5-Cal-litettix versicolor) ...The prey-seeking behavior of three spiders (X1-Pirata subpiraticus, X2-Clubiona japonicola and X3-Tetragnatha japonica) for brown plant hopper (X4-Nilaparvata lugens) and rice spittle bug (X5-Cal-litettix versicolor) was investigated, as well as how interference between and within species occurred, by using a quadratic regression rotational composite design. Six predation models derived from the analysis of interactions among and within predators and preys were developed. The total predatory capacity of spiders on rice insect pests after coexistence for one day can be expressed as follows: Y3 = 32.795 + 2.25X1 + 1.083X2 + 0.5X3 + 10.167X4 + 3.167X5 - 1.67X12 - 2.42X22 - 3.295X32 - 0.045X42 + 0.455X52 - 3.125X1X2 + 0.375X1X3 -0.625X1X4 - 0.375X1X5 + 0.375X2X3 - 0.875X2X4 + 0.125X2X5 + 0.375X3X4 - 0.375X3X5 + 0.125X4X5. The principal efficiency analysis using this model indicated that increases in insect pest density significantly increased predation by predators; this was much greater than the effect of any single predator. X4 had a greater effect than X5; however, X4 and X5 demonstrated little interspecific interference and even promoted each other and increased predation rates as the densities of the two pests increased. Among the three predators, an increase in the density of X, had the greatest effect on the increase in predation, X3 had the second, X2 the third greatest effect. As predator density increased inter- and intra-species interference occurred, which were largely related to the size, activity, niche breadth, niche overlap and searching efficiency of the predators. X2 produced the greatest interference between different individuals and between any other predator species. X3 had the second greatest, which reduced predation levels at high predator densities. Because of these factors, the highest predation rate was obtained at a prey density of 120 per 4 rice-hills. The optimal proportion of the three predators in the multi-predator prey system was X1: X2: X3 = 5.6:1.3:4.1.展开更多
Ecological engineering involves the use of plants to promote establishment, survival and efficiency of natural enemies in agricultural systems. Some plant species may be hosts or provide resources to some pest species...Ecological engineering involves the use of plants to promote establishment, survival and efficiency of natural enemies in agricultural systems. Some plant species may be hosts or provide resources to some pest species. We assessed the risks and benefits of sesame (Sesamum indicum L.), as a nectar source for seven economically important Lepidopteran pest and four parasitoid species in a range of vegetable crop systems. Our results showed that the mean Iongevities of arthropod parasitoids Pteromalus puparum (L.), Encarsia sophia (Girault & Dodd) and male Microplitis tuberculifer (Wesmael) were significantly extended when fed on sesame flowers compared to the water control. Sesame flowers had no effect on adult Iongevities and fecundities of six out of the seven Lepidoptera pest species tested except Plutella xyllostella (L.) females laid more eggs when fed on sesame flowers. It is likely that the increased fecundity is due to accessibility to nectar at the bottom of corolla because of their smaller body sizes. Our findings provide a first step towards better understanding of the risks and benefits of using sesame to implement ecological engineering for the management of vegetable pests.展开更多
The aphid quantity ratio(AQR) is defined as the number of aphids on each cultivar divided by the number of aphids on all cultivars. AQR is based on the correlation between aphid populations and their host plants and...The aphid quantity ratio(AQR) is defined as the number of aphids on each cultivar divided by the number of aphids on all cultivars. AQR is based on the correlation between aphid populations and their host plants and is an important tool that has been utilized in evaluating Medicago sativa(alfalfa) cultivar resistance to aphids. However, assessment of alfalfa resistance to aphids can be confused by the presence of aphid predators, causing the assessment of plant resistance to aphids to be based on incorrect aphid population data. To refine the AQR and account for the effect of predators on aphid population assessments, we introduced a parameter ‘α', corresponding to the predator quantity ratio, and used αAQR as the ratio to quantify aphid populations. Populations of both aphids(4 species) and their predators(12 species) occurring in 28 M. sativa cultivars were sampled over two years at a research station near Cangzhou, Hebei Province, China. Results showed that the most suitable evaluation period was from May to June, as the aphid population was stable during this period. Compared with the AQR method, the predator population numbers based on the αAQR had a significant inverse relationship with aphid population numbers and the 28 cultivars were clustered into three classes: the resistant class, tolerant class, and susceptible class. In addition, 17 cultivars were reassigned when evaluated using αAQR. All numerical values calculated by αAQR were displayed as a Gaussian distribution, which showed that the 28 cultivars could be clustered into nine groups using a median value(±SE) of 1±0.1. Hence, ongoing alfalfa breeding trials will be assessed using the αAQR to establish a robust system that includes agronomic performance parameters in order to generalize the new method for further studies.展开更多
Beneficial insects provide natural ecosystem services such as biological control of pests, soil formation, nutrient cycling and pollination of plants. Beneficial insects include pollinators important in the essential ...Beneficial insects provide natural ecosystem services such as biological control of pests, soil formation, nutrient cycling and pollination of plants. Beneficial insects include pollinators important in the essential pollination process of all plants, and natural enemies of pests such as parasitoids and predators which are important in the suppression of pest damage to crops. Knowledge on management techniques to attract beneficial insects in the agricultural fields is a way forward to enhance agro ecosystems for increased crop production. Therefore, proper understanding and identification of natural enemies, as well as pollinators in agricultural fields, is essential in promoting biological control and pollination activity. Natural enemies and pollinators, within legume fields, play a key role in ensuring sustainable production, especially in smallholder farms. There is a limited understanding of beneficial insects and the ecosystem services they offer to the agricultural production process in much of sub-Saharan Africa. This paper reviewed and provided existing knowledge on beneficial insects in bean fields. This will give the basis for research on beneficial insects in bean fields and practices that encourage their populations.展开更多
The thrips quantity ratio(TQR) model is an important tool for evaluating crop resistance to thrips based on the correlation between thrips quantities and cultivars. Unfortunately, it is inaccurate, and the results a...The thrips quantity ratio(TQR) model is an important tool for evaluating crop resistance to thrips based on the correlation between thrips quantities and cultivars. Unfortunately, it is inaccurate, and the results appear significantly inconsistent when analysing the same cultivars in the same field study. To improve this model, we first studied the resistance of 28 alfalfa cultivars to thrips in Cangzhou, Hebei Province, north China. The results showed that the most suitable evaluation period was from May to June, as the thrips population was stable during this period. Second, we found that the natural enemy population was significantly positively correlated with the thrips population density(R=0.7275, P〈0.0001), which might influence resistance estimation. Hence, we introduced a parameter ‘α', corresponding to the natural enemy quantity ratio, to eliminate the effect of the natural enemy using "αTQR". Using the improved method, 28 cultivars were clustered into three classes: the resistant class, sensitive class, and median class. All numerical values were calculated for αTQR displayed as a Gaussian distribution. This information showed that all data should be divided into nine groups using a median value of 1±0.1 with an equal difference of 0.1. Based on the new standard cultivars, Gongnong 1, Alfaking, Cangzhou and Algonquin were classified as highly resistant cultivars; Zhongmu 3, Gongnong 2, Zhongmu 1 and Zhongmu 2 were classified in the resistant group; Queen was classified in the moderately resistant group; Derby, WL354HQ, KRIMA, Apex, 53 HR, SARDI 5 and Farmers Treasure were classified in the median class; WL319HQ, WL343HQ and Sitel were classified as the low sensitive group; WL440 HQ and SARDI7 as the moderately sensitive group; WL168HQ and Sanditi as the sensitive group; and SARDI 10, WL363HQ, FD4, WL323 and SOCA as the highly sensitive group.展开更多
基金Supported by Sugar Crop Research System(CARS-170303)Training Project of Yunling Industry and Technology Leading Talents(2018LJRC56)Special Fund of Agricultural Industry Research System in Yunnan Province
文摘This paper discussed and summarized the parasitic characters and the protection and utilization of 7 species of dominant natural enemies of sugarcane pests in Yunnan, China. Sugarcane pests are numerous and there are rich natural enemy resources in Yunnan sugarcane areas. There are more than 283 species of natural enemies against sugarcane pests in Yunnan, among which the dominant natural enemies with protection and utilization value and research significance include Trichogramma, Apanteles flavipes(Cameron) and Sturmiopsis inferens Townsend parasitic on sugarcane borers, Synonycha grandis(Thunberg), Lemnia biplagiata(Swartz), Chilomenes sexmaculata(Fabricius) and Thiallela sp catching and feeding on Ceratovacuna lanigera Zehntner, and Euborellia pallipes Shiraki preying on Saccharicocus sacchari(Cocherell), Dysmicoccus bohinsis Kuw, Trochorhopalus humeralis Chevrolat and Diocalandra sp. There is also one fungal parasite, namely Beauveria bassiana, which is widely distributed in nature, and can parasitize in a variety of sugarcane pests including sugarcane borers, Exolontha serrulata(Gyllenhal), Alissonotum impressicolle Arrow, T. humeralis and Otidognathus rubriceps Chevrola. It has a natural parasitism rate generally around 10% and certain natural inhibition effect on sugarcane pests. Reasonably protecting and utilizing natural enemies and giving full play to the natural regulation of natural enemies on pests are of great significance for protecting the ecological environment, maintaining the ecological balance of sugarcane fields, improving the comprehensive management level of pests, and promoting the sustainable development of sugar industry.
文摘Field studies were conducted at Hisar during Kharif, 2009-2010 and 2010-2011 under natural and unsprayed condition. RCH 134 Bt, HS 6 (non Bt), H 1117 and Ganganagar Ageti (non Bt) were selected for the studies. The experiment was laid down in Randomized Block Design replicated thrice having plant spacing 67.5 × 60 cm. Among the bollworms, Erias spp. exhibited positive correlation with rainfall, minimum temperature and relative humidity morning hours significantly at 5 percent level whereas Helicoverpa and Pectinophora displayed positive relations only with evening hours relative humidity significantly while Spodoptera were significantly positive correlated with relative humidity of morning and evening hours. Bollworm complex was negatively correlated with all the weather parameters employed to study although being non-significant in case of rainfall, maximum and minimum of temperature, morning and evening hours of relative humidity. Among the sucking pests, leafhoppers, whitefly, thrips and aphids population showed significantly negative correlation with weather parameters. The comparison of natural bio-agents in cotton hybrids under study revealed that overall mean population of natural enemies were higher in Bt cotton hybrid as compared to non-Bt. These results confirm that use of genetically modified (Bt) cotton in lieu of conventional genotypes could positively impact non-target and beneficial insect species by preserving their host populations.
文摘In agriculture, chemical insecticides are widely used to protect crops from insect pests. Over a period of years, some insects such as Colorado potato beetle (CPB) succeed in developing resistance to most of the registered chemical insecticides. Consequently, heavy applications of chemical insecticides to control this pest become ineffective on a long-term basis and can lead to serious health and environmental problems. The use of natural enemies to control CPB is an interesting alternative to chemical means However, hand release of predators is not feasible on a large scale in the field. The main objective of this research study was to design and build a test bench to investigate the technical feasibility of mechanically releasing predators. The test bench consisted of a vertical chain conveyor mounted on two vertical shafts driven by an electric motor. Since the predators are small and fragile, they were placed in a specially designed container to preserve their physical integrity. Trials using this test bench showed that a carrier material was required, because most of the predators remained inside the container. The success of this mass predator release system will be highly valuable for the biological control of insect pests in many crops.
文摘The prey-seeking behavior of three spiders (X1-Pirata subpiraticus, X2-Clubiona japonicola and X3-Tetragnatha japonica) for brown plant hopper (X4-Nilaparvata lugens) and rice spittle bug (X5-Cal-litettix versicolor) was investigated, as well as how interference between and within species occurred, by using a quadratic regression rotational composite design. Six predation models derived from the analysis of interactions among and within predators and preys were developed. The total predatory capacity of spiders on rice insect pests after coexistence for one day can be expressed as follows: Y3 = 32.795 + 2.25X1 + 1.083X2 + 0.5X3 + 10.167X4 + 3.167X5 - 1.67X12 - 2.42X22 - 3.295X32 - 0.045X42 + 0.455X52 - 3.125X1X2 + 0.375X1X3 -0.625X1X4 - 0.375X1X5 + 0.375X2X3 - 0.875X2X4 + 0.125X2X5 + 0.375X3X4 - 0.375X3X5 + 0.125X4X5. The principal efficiency analysis using this model indicated that increases in insect pest density significantly increased predation by predators; this was much greater than the effect of any single predator. X4 had a greater effect than X5; however, X4 and X5 demonstrated little interspecific interference and even promoted each other and increased predation rates as the densities of the two pests increased. Among the three predators, an increase in the density of X, had the greatest effect on the increase in predation, X3 had the second, X2 the third greatest effect. As predator density increased inter- and intra-species interference occurred, which were largely related to the size, activity, niche breadth, niche overlap and searching efficiency of the predators. X2 produced the greatest interference between different individuals and between any other predator species. X3 had the second greatest, which reduced predation levels at high predator densities. Because of these factors, the highest predation rate was obtained at a prey density of 120 per 4 rice-hills. The optimal proportion of the three predators in the multi-predator prey system was X1: X2: X3 = 5.6:1.3:4.1.
基金funded by the Zhejiang Key Research and Development Program,China(2015C02014)the earmarked fund for China Agriculture Research System(CARS-01-17)
文摘Ecological engineering involves the use of plants to promote establishment, survival and efficiency of natural enemies in agricultural systems. Some plant species may be hosts or provide resources to some pest species. We assessed the risks and benefits of sesame (Sesamum indicum L.), as a nectar source for seven economically important Lepidopteran pest and four parasitoid species in a range of vegetable crop systems. Our results showed that the mean Iongevities of arthropod parasitoids Pteromalus puparum (L.), Encarsia sophia (Girault & Dodd) and male Microplitis tuberculifer (Wesmael) were significantly extended when fed on sesame flowers compared to the water control. Sesame flowers had no effect on adult Iongevities and fecundities of six out of the seven Lepidoptera pest species tested except Plutella xyllostella (L.) females laid more eggs when fed on sesame flowers. It is likely that the increased fecundity is due to accessibility to nectar at the bottom of corolla because of their smaller body sizes. Our findings provide a first step towards better understanding of the risks and benefits of using sesame to implement ecological engineering for the management of vegetable pests.
基金funded by the earmarked fund for China Agriculture Research System (CARS-34-07)the National Department of Public Benefit Research Foundation, China (201303057)
文摘The aphid quantity ratio(AQR) is defined as the number of aphids on each cultivar divided by the number of aphids on all cultivars. AQR is based on the correlation between aphid populations and their host plants and is an important tool that has been utilized in evaluating Medicago sativa(alfalfa) cultivar resistance to aphids. However, assessment of alfalfa resistance to aphids can be confused by the presence of aphid predators, causing the assessment of plant resistance to aphids to be based on incorrect aphid population data. To refine the AQR and account for the effect of predators on aphid population assessments, we introduced a parameter ‘α', corresponding to the predator quantity ratio, and used αAQR as the ratio to quantify aphid populations. Populations of both aphids(4 species) and their predators(12 species) occurring in 28 M. sativa cultivars were sampled over two years at a research station near Cangzhou, Hebei Province, China. Results showed that the most suitable evaluation period was from May to June, as the aphid population was stable during this period. Compared with the AQR method, the predator population numbers based on the αAQR had a significant inverse relationship with aphid population numbers and the 28 cultivars were clustered into three classes: the resistant class, tolerant class, and susceptible class. In addition, 17 cultivars were reassigned when evaluated using αAQR. All numerical values calculated by αAQR were displayed as a Gaussian distribution, which showed that the 28 cultivars could be clustered into nine groups using a median value(±SE) of 1±0.1. Hence, ongoing alfalfa breeding trials will be assessed using the αAQR to establish a robust system that includes agronomic performance parameters in order to generalize the new method for further studies.
文摘Beneficial insects provide natural ecosystem services such as biological control of pests, soil formation, nutrient cycling and pollination of plants. Beneficial insects include pollinators important in the essential pollination process of all plants, and natural enemies of pests such as parasitoids and predators which are important in the suppression of pest damage to crops. Knowledge on management techniques to attract beneficial insects in the agricultural fields is a way forward to enhance agro ecosystems for increased crop production. Therefore, proper understanding and identification of natural enemies, as well as pollinators in agricultural fields, is essential in promoting biological control and pollination activity. Natural enemies and pollinators, within legume fields, play a key role in ensuring sustainable production, especially in smallholder farms. There is a limited understanding of beneficial insects and the ecosystem services they offer to the agricultural production process in much of sub-Saharan Africa. This paper reviewed and provided existing knowledge on beneficial insects in bean fields. This will give the basis for research on beneficial insects in bean fields and practices that encourage their populations.
基金financial support by the earmarked fund for China Agriculture Research System (CARS-35-07)
文摘The thrips quantity ratio(TQR) model is an important tool for evaluating crop resistance to thrips based on the correlation between thrips quantities and cultivars. Unfortunately, it is inaccurate, and the results appear significantly inconsistent when analysing the same cultivars in the same field study. To improve this model, we first studied the resistance of 28 alfalfa cultivars to thrips in Cangzhou, Hebei Province, north China. The results showed that the most suitable evaluation period was from May to June, as the thrips population was stable during this period. Second, we found that the natural enemy population was significantly positively correlated with the thrips population density(R=0.7275, P〈0.0001), which might influence resistance estimation. Hence, we introduced a parameter ‘α', corresponding to the natural enemy quantity ratio, to eliminate the effect of the natural enemy using "αTQR". Using the improved method, 28 cultivars were clustered into three classes: the resistant class, sensitive class, and median class. All numerical values were calculated for αTQR displayed as a Gaussian distribution. This information showed that all data should be divided into nine groups using a median value of 1±0.1 with an equal difference of 0.1. Based on the new standard cultivars, Gongnong 1, Alfaking, Cangzhou and Algonquin were classified as highly resistant cultivars; Zhongmu 3, Gongnong 2, Zhongmu 1 and Zhongmu 2 were classified in the resistant group; Queen was classified in the moderately resistant group; Derby, WL354HQ, KRIMA, Apex, 53 HR, SARDI 5 and Farmers Treasure were classified in the median class; WL319HQ, WL343HQ and Sitel were classified as the low sensitive group; WL440 HQ and SARDI7 as the moderately sensitive group; WL168HQ and Sanditi as the sensitive group; and SARDI 10, WL363HQ, FD4, WL323 and SOCA as the highly sensitive group.