Recently,the use of deep foundations has increased as a result of the expansion in the construction of high-rise buildings,train tracks,and port berths.As a result of this expansion,it was necessary to use deep founda...Recently,the use of deep foundations has increased as a result of the expansion in the construction of high-rise buildings,train tracks,and port berths.As a result of this expansion,it was necessary to use deep foundations that have low cost,high bearing loads,low settlement,and construction time,and such foundations are subjected to different types of loads such as lateral,vertical compression,and tension loads.This research paper will present one of the most important types of deep foundations that are aptly used in such structures and the most important factors affecting their bearing capacity and settlement in stiff clay.This type of deep foundation is called an under-reamed pile.The factors used in this study are pile length to diameter ratio L/D=30,bulb diameter ratio(Du/D=1.5,2,2.25,and 2.5),number of bulbs(N=1,2,and 3),and spacing ratio(S/D=2 to 8).To investigate the effects of these parameters and obtain optimal results,the PLAXIS 3D was used.The analysis shows that the increase in bulb diameter increases the bearing load by 43%.Bulb spacing controls the failure mechanisms,whether cylindrical shear failure or individual failure and increases the capacity by 66%and 99%,respectively,for two and three bulbs when the bulb spacing becomes S/D=8.When the number of bulbs increases to three,the capacity increases by 90%.If each bulb works individually,the bearing capacity doubles.展开更多
The study deals with physical modeling of a typical building frame resting on a pile group embedded in cohesive soil mass using complete three-dimensional finite element analysis. The elements of the superstructure fr...The study deals with physical modeling of a typical building frame resting on a pile group embedded in cohesive soil mass using complete three-dimensional finite element analysis. The elements of the superstructure frame and that of the pile foundation are discretized using twenty node isoparametric continuum elements. The interface between the pile and pile cap is idealized using sixteen node isoparametric surface elements. The more improved finite element mesh is used for modeling soil element as compared to the one used in the study reported in the literature. The soil elements are discretized using eight node, nine node and twelve node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in elastic state at all the time. The interaction analysis is carried out using sub-structure approach to attempt a parametric study. The effect of the parameter such as spacing between the piles in a group and diameter of pile is evaluated on the response of superstructure. The response includes the displacement at the top of the frame. The effect of the soil-structure interaction is observed to be significant for the type of foundation and soil considered in the present study.展开更多
文摘Recently,the use of deep foundations has increased as a result of the expansion in the construction of high-rise buildings,train tracks,and port berths.As a result of this expansion,it was necessary to use deep foundations that have low cost,high bearing loads,low settlement,and construction time,and such foundations are subjected to different types of loads such as lateral,vertical compression,and tension loads.This research paper will present one of the most important types of deep foundations that are aptly used in such structures and the most important factors affecting their bearing capacity and settlement in stiff clay.This type of deep foundation is called an under-reamed pile.The factors used in this study are pile length to diameter ratio L/D=30,bulb diameter ratio(Du/D=1.5,2,2.25,and 2.5),number of bulbs(N=1,2,and 3),and spacing ratio(S/D=2 to 8).To investigate the effects of these parameters and obtain optimal results,the PLAXIS 3D was used.The analysis shows that the increase in bulb diameter increases the bearing load by 43%.Bulb spacing controls the failure mechanisms,whether cylindrical shear failure or individual failure and increases the capacity by 66%and 99%,respectively,for two and three bulbs when the bulb spacing becomes S/D=8.When the number of bulbs increases to three,the capacity increases by 90%.If each bulb works individually,the bearing capacity doubles.
文摘The study deals with physical modeling of a typical building frame resting on a pile group embedded in cohesive soil mass using complete three-dimensional finite element analysis. The elements of the superstructure frame and that of the pile foundation are discretized using twenty node isoparametric continuum elements. The interface between the pile and pile cap is idealized using sixteen node isoparametric surface elements. The more improved finite element mesh is used for modeling soil element as compared to the one used in the study reported in the literature. The soil elements are discretized using eight node, nine node and twelve node continuum elements. Both the elements of superstructure and substructure (i.e., foundation) including soil are assumed to remain in elastic state at all the time. The interaction analysis is carried out using sub-structure approach to attempt a parametric study. The effect of the parameter such as spacing between the piles in a group and diameter of pile is evaluated on the response of superstructure. The response includes the displacement at the top of the frame. The effect of the soil-structure interaction is observed to be significant for the type of foundation and soil considered in the present study.