The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the...The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.展开更多
This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting tr...This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.展开更多
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the ...Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the relationship between the quadricep and hamstring strength and the prevalence of lower extremity injuries in netball players. Setting: Twenty-five female netball players (age: 20.8 ± 1.4 years) voluntarily participated. Methods: The Cybex Isokinetic dynamometer was used to determine concentric knee torques. Quadriceps:hamstring strength ratio was determined. Occurrence of lower extremity injuries was documented bi-weekly. Results: Medium effect sizes were noted for flexion torque:work for the left leg and for the quadriceps:hamstring ratio (≥60%) for the right leg. All the other measured variables have a small effect size. 18.75% of lower extremity injuries and ConQ:ConH of Conclusion: Injuries to the ankle and knee are especially common among netball players. Hamstring and quadriceps muscle asymmetry (>10%) were found to be a potential indicator of lower extremity injury. Contribution: This study highlights awareness on lower extremity injuries and the strength ratio between the quadriceps and hamstrings. This can aid coaches and netball players to lower the risk for injuries and thus improve individual- and team performance.展开更多
The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law harde...The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data.展开更多
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ...The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.展开更多
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ...The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions展开更多
In the present study, a modified Hall-Petch correlation on the basis of dislocation pile-up model was used to estimate the yield strength of SiCp/AI composites. The experimental results show that the modified Hall-Pet...In the present study, a modified Hall-Petch correlation on the basis of dislocation pile-up model was used to estimate the yield strength of SiCp/AI composites. The experimental results show that the modified Hall-Petch correlation expressed as σcy=244+371λ-1/2 fits very well with the experimental data, which indicated that the strength increase of SiCp/AI composites might be due to the direct blocking of dislocation motion by the particulate-matrix interface, namely, the dislocation pile-up is the most possible strengthening mechanism for SiCp/AI composites.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1...Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.展开更多
Background Boron(B)deficiency is an important factor for poor seed cotton yield and fiber quality.However,it is often missing in the plant nutrition program,particularly in developing countries.The current study inves...Background Boron(B)deficiency is an important factor for poor seed cotton yield and fiber quality.However,it is often missing in the plant nutrition program,particularly in developing countries.The current study investigated B’s effect on growth,yield,and fiber quality of Bt(CIM-663)and non-Bt(Cyto-124)cotton cultivars.The experimental plan consisted of twelve treatments:Control(CK);B at 1 mg·kg^(−1) soil application(SB1);2 mg·kg^(−1) B(SB2);3 mg·kg^(−1) B(SB3);0.2%B foliar spray(FB1);0.4%B foliar spray(FB2);1 mg·kg^(−1) B+0.2%B foliar spray(SB1+FB1);1 mg·kg^(−1) B+0.4%B foliar spray(SB1+FB2);2 mg·kg^(−1) B+0.2%B foliar spray(SB2+FB1);2 mg·kg^(−1) B+0.4%B foliar spray(SB2+FB2);3 mg·kg^(−1) B+0.2%B foliar spray(SB3+FB1);3 mg·kg^(−1) B+0.4%B foliar spray(SB3+FB2).Each treat-ment has three replications,one pot having two plants per replication.Results B nutrition at all levels and methods of application significantly(P≤0.05)affected the growth,physiological,yield,and fiber quality characteristics of both cotton cultivars.However,SB2 either alone or in combination with foliar spray showed superiority over others,particularly in the non-Bt cultivar which responded better to B nutrition.Maxi-mum improvement in monopodial branches(345%),sympodial branches(143%),chlorophyll-a(177%),chlorophyll-b(194%),photosynthesis(169%),and ginning out turn(579%)in the non-Bt cultivar was found with SB2 compared with CK.In Bt cultivar,although no consistent trend was found but integrated use of SB3 with foliar spray performed relatively better for improving cotton growth compared with other treatments.Fiber quality characteristics in both cultivars were improved markedly but variably with different B treatments.Conclusion B nutrition with SB2 either alone or in combination with foliar spray was found optimum for improving cotton’s growth and yield characteristics.展开更多
A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experime...A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.展开更多
Due to the large unexplored compositional space,long development cycle,and high cost of traditional trial-anderror experiments,designing high strength aluminum-lithium alloys is a great challenge.This work establishes...Due to the large unexplored compositional space,long development cycle,and high cost of traditional trial-anderror experiments,designing high strength aluminum-lithium alloys is a great challenge.This work establishes a performance-oriented machine learning design strategy for aluminum-lithium alloys to simplify and shorten the development cycle.The calculation results indicate that radial basis function(RBF)neural networks exhibit better predictive ability than back propagation(BP)neural networks.The RBF neural network predicted tensile and yield strengths with determination coefficients of 0.90 and 0.96,root mean square errors of 30.68 and 25.30,and mean absolute errors of 28.15 and 19.08,respectively.In the validation experiment,the comparison between experimental data and predicted data demonstrated the robustness of the two neural network models.The tensile and yield strengths of Al-2Li-1Cu-3Mg-0.2Zr(wt.%)alloy are 17.8 and 3.5 MPa higher than those of the Al-1Li4.5Cu-0.2Zr(wt.%)alloy,which has the best overall performance,respectively.It demonstrates the reliability of the neural network model in designing high strength aluminum-lithium alloys,which provides a way to improve research and development efficiency.展开更多
This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers ...This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector.展开更多
To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of ...To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of strength reduction due to the increases in void ratio were the same for binders with different strengths. To study the influence of aggregate size, 3 single size aggregates with nominal sizes of 5.0, 13.0 and 20.0 mm (Nos. 7, 6 and 5 according to JIS A 5001) were used to make porous concrete. The strengths of porous concrete are found to be dependent on aggregate size. The rate of strength reduction of porous concrete with small aggregate size is found to be higher than that with larger aggregate size. At the same void ratio, the strength of porous concrete with large aggregate is larger than that with small aggregate. The general equations for porous concrete are related to compressive strength and void ratio for different binder strengths and aggregate sizes.展开更多
For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate l...For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate lateral spreading displacements, and the forces acting on the piles from the liquefied soils in order to perform post liquefaction stability analyses. The most commonly used methods to estimate the undrained residual shear strength (Su~) of liquefied sand deposits are based on the correlations determined from liquefaction induced flow failures with SPT and CPT data. In this study, 44 lateral spread case histories are analyzed and a new relationship based on only lateral spread case histories is recommended, which estimates the residual shear strength ratio of the liquefiable soil layer from normalized shear wave velocity. The new proposed method is also utilized to estimate the residual lateral displacement of an example bridge problem in an area susceptible to lateral spreading in order to provide insight into how the proposed relationship can be used in geotechnical engineering practice.展开更多
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma...Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.展开更多
Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the ...Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the average grain size of forged piece was greatly refined to 5.3μm after 120 forging passes,which was ascribed to the segmenting effect of{10–12}twins and the subsequent multiple rounds of dynamic recrystallization(DRX).A great deal of{10–12}twins were activated at the beginning of MDIF process,which played an important role in grain refinement.With forging proceeding,continuous and discontinuous DRX were successively activated,resulting in the fully DRXed microstructure.Meanwhile,the forged piece exhibited a unique four-peak texture,and the initial<10-10>//ED fiber texture component gradually evolved into multiple texture components composed of<0001>//FFD(first forging direction)and<11–20>//FFD texture.The special strain path was the key to the formation of the unique four-peak texture.The{10–12}twinning and basal slip were two dominant factors to the evolution of texture during MDIF process.Grain strengthening and dislocation strengthening were two main strengthening mechanisms of the forged piece.Besides,the symmetry of yield strength was greatly improved by MDIF process.展开更多
In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th ...In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th e rock m assp aram eters from in -situ investigations w ith th e stre n g th p a ram eters o f jo in ted rocks obtain ed fromlaboratory scale ex p erim en tal observations. Using th e co n stitu tiv e relation, th e a u th o r derived a p ressu reand d am age sensitive plastic p a ra m e te r to d ete rm in e stre n g th o f rock m asses for varied ex te n ts ofd isco n tin u ity an d p ressu re induced dam age. The te s t results show th a t plasticity characterized byhard en in g an d softening inclusive o f dam ag e invariably d e p en d s u p o n m ean p ressu re an d e x te n t ofdefo rm atio n s alread y experien ced by rock m asses. The p re se n t w ork explores th e te s t d a ta th a t revealth e d ep en d en c e o f in -situ stren g th on increm ental jo in t p ara m e te rs o b tain ed from th e jo in t num ber,jo in t orien tatio n , jo in t roughness, gouge p a ram eters an d w a te r pressure. S ubstituting th e relationshipb e tw e e n th e RQD and m odified jo in t factor w ith th a t b e tw e e n m odulus ratio an d stren g th ratio, th em odel show s successfully th a t using d am age inclusive plastic p a ra m e te r an d RQD provides a relationshipfor estim atin g th e stre n g th o f rock m asses. One o f th e m ain objectives o f this w ork is to illustrate th a t th ep re se n t m odel is sensitive to p la s tic ity a n d dam ag e to g e th e r in estim atin g in -situ stre n g th o f rock m assesin foundations, u n d e rg ro u n d excavation an d tunnels.展开更多
Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile streng...Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.展开更多
基金Project(2023YFC2907403)supported by the National Key R&D Program of ChinaProject(52074021)supported by the National Natural Science Foundation of China+1 种基金Project(2242045)supported by Beijing Natural Science Foundation,ChinaProject(ZD202216)supported by the Beijing Association of Higher Education,China。
文摘The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.
基金financially supported by the Scientific and Technological Developing Scheme of Jilin Province under grants no.20220402012GHthe National Natural Science Foundation of China under grants no.U21A20323+3 种基金the Capital Construction Fund within the Budget of Jilin Province no.2021C038-1the Special high-tech industrialization project of science and technology cooperation between Jilin Province and Chinese Academy of Sciences under grant no.2021SYHZ0043 and 2022SYHZ0038the Major science and technology projects of Jilin Province and Changchun City under grant no.20210301024GXthe Project for Jilin provincial department of education under grant no.JJKH20220760KJ。
文摘This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
文摘Background: Netball is a popular sport. Due to high impact and quick movement, there is an enormous load on the lower extremities which increases the risk for injury. Aim: The aim of this study was to investigate the relationship between the quadricep and hamstring strength and the prevalence of lower extremity injuries in netball players. Setting: Twenty-five female netball players (age: 20.8 ± 1.4 years) voluntarily participated. Methods: The Cybex Isokinetic dynamometer was used to determine concentric knee torques. Quadriceps:hamstring strength ratio was determined. Occurrence of lower extremity injuries was documented bi-weekly. Results: Medium effect sizes were noted for flexion torque:work for the left leg and for the quadriceps:hamstring ratio (≥60%) for the right leg. All the other measured variables have a small effect size. 18.75% of lower extremity injuries and ConQ:ConH of Conclusion: Injuries to the ankle and knee are especially common among netball players. Hamstring and quadriceps muscle asymmetry (>10%) were found to be a potential indicator of lower extremity injury. Contribution: This study highlights awareness on lower extremity injuries and the strength ratio between the quadriceps and hamstrings. This can aid coaches and netball players to lower the risk for injuries and thus improve individual- and team performance.
基金Project(N110607002)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51074052)supported by the National Natural Science Foundation of China
文摘The effect of yield-to-tensile strength ratio(Y/T) on failure pressure of X70 pipeline without and with corrosion defects was investigated.The stress-strain response of materials was characterized by a power-law hardening curve.Two formulas to estimate the strain hardening exponent n for a special Y/T were obtained by least squared regression method and the influence of Y/T on n was analyzed.As an application of n-Y/T expression,the analytical solutions of burst pressure for X70 pipeline without and with corrosion defects were also obtained.The results indicate that the burst pressure of defect-free X70 pipe without corrosion defects is a function of the Y/T,pipe geometry t0/D0 and engineering tensile strength,and increases as Y/T or t0/D0 increases; whilst the burst pressure of corroded X70 pipe decreases with the increase of defect depths,d/t.Comparisons indicate that the present analytical solutions closely match available experimental and numerical data.
基金National Key R&D Program of China under Grant No.2017YFC1500601National Natural Science Foundation of China under Grant Nos.51678541 and 51708523Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2016A01。
文摘The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.
文摘The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions
文摘In the present study, a modified Hall-Petch correlation on the basis of dislocation pile-up model was used to estimate the yield strength of SiCp/AI composites. The experimental results show that the modified Hall-Petch correlation expressed as σcy=244+371λ-1/2 fits very well with the experimental data, which indicated that the strength increase of SiCp/AI composites might be due to the direct blocking of dislocation motion by the particulate-matrix interface, namely, the dislocation pile-up is the most possible strengthening mechanism for SiCp/AI composites.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
文摘Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.
文摘Background Boron(B)deficiency is an important factor for poor seed cotton yield and fiber quality.However,it is often missing in the plant nutrition program,particularly in developing countries.The current study investigated B’s effect on growth,yield,and fiber quality of Bt(CIM-663)and non-Bt(Cyto-124)cotton cultivars.The experimental plan consisted of twelve treatments:Control(CK);B at 1 mg·kg^(−1) soil application(SB1);2 mg·kg^(−1) B(SB2);3 mg·kg^(−1) B(SB3);0.2%B foliar spray(FB1);0.4%B foliar spray(FB2);1 mg·kg^(−1) B+0.2%B foliar spray(SB1+FB1);1 mg·kg^(−1) B+0.4%B foliar spray(SB1+FB2);2 mg·kg^(−1) B+0.2%B foliar spray(SB2+FB1);2 mg·kg^(−1) B+0.4%B foliar spray(SB2+FB2);3 mg·kg^(−1) B+0.2%B foliar spray(SB3+FB1);3 mg·kg^(−1) B+0.4%B foliar spray(SB3+FB2).Each treat-ment has three replications,one pot having two plants per replication.Results B nutrition at all levels and methods of application significantly(P≤0.05)affected the growth,physiological,yield,and fiber quality characteristics of both cotton cultivars.However,SB2 either alone or in combination with foliar spray showed superiority over others,particularly in the non-Bt cultivar which responded better to B nutrition.Maxi-mum improvement in monopodial branches(345%),sympodial branches(143%),chlorophyll-a(177%),chlorophyll-b(194%),photosynthesis(169%),and ginning out turn(579%)in the non-Bt cultivar was found with SB2 compared with CK.In Bt cultivar,although no consistent trend was found but integrated use of SB3 with foliar spray performed relatively better for improving cotton growth compared with other treatments.Fiber quality characteristics in both cultivars were improved markedly but variably with different B treatments.Conclusion B nutrition with SB2 either alone or in combination with foliar spray was found optimum for improving cotton’s growth and yield characteristics.
文摘A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models.
基金supported by the National Natural Science Foundation of China(Nos.52074246,52275390,52205429,52201146)National Defense Basic Scientific Research Program of China(JCKY2020408B002)Key Research and Development Program of Shanxi Province(202102050201011,202202050201014).
文摘Due to the large unexplored compositional space,long development cycle,and high cost of traditional trial-anderror experiments,designing high strength aluminum-lithium alloys is a great challenge.This work establishes a performance-oriented machine learning design strategy for aluminum-lithium alloys to simplify and shorten the development cycle.The calculation results indicate that radial basis function(RBF)neural networks exhibit better predictive ability than back propagation(BP)neural networks.The RBF neural network predicted tensile and yield strengths with determination coefficients of 0.90 and 0.96,root mean square errors of 30.68 and 25.30,and mean absolute errors of 28.15 and 19.08,respectively.In the validation experiment,the comparison between experimental data and predicted data demonstrated the robustness of the two neural network models.The tensile and yield strengths of Al-2Li-1Cu-3Mg-0.2Zr(wt.%)alloy are 17.8 and 3.5 MPa higher than those of the Al-1Li4.5Cu-0.2Zr(wt.%)alloy,which has the best overall performance,respectively.It demonstrates the reliability of the neural network model in designing high strength aluminum-lithium alloys,which provides a way to improve research and development efficiency.
文摘This experimental study aims to examine the influence of many crucial parameters on the workability and compressive strength of Ready-Mix Concrete (RMC). The study utilized two distinct varieties of superplasticizers obtained from the local market. The fine aggregates utilized in this study were sourced from Sylhet sand, whereas the coarse aggregates were comprised of boulder crushed stone chips. The experimental procedures adhered to the requirements outlined by ASTM. A comprehensive investigation was conducted on a range of concrete compositions that used diverse chemical admixtures. The slump test was performed at regular intervals of 15 minutes until the slump value reached or fell below 3 cm after the mixing of the concrete. In the scenario involving two-stage admixture dosage, the second stage of admixture was introduced once the slump reached or dropped below 3 cm, following which the casting process was initiated. The process of curing concrete specimens consists of two distinct stages: the main stage and the final stage. Cylindrical specimens, with a diameter of 4 inches and a height of 8 inches, were manufactured for the purpose of evaluating their compressive strength at both 7 and 28 days. During the experimental trials, the water-cement (w/c) ratio was kept consistent, while different dosages of admixture were applied. The findings of the study indicate that the utilization of a two-stage dose of admixture resulted in enhanced and extended workability, along with higher strength of the concrete in comparison to specimens that did not incorporate any admixture. This research study enhances the comprehension of optimizing qualities of ready-mix concrete (RMC) by varying the superplasticizer, providing useful insights for the building sector.
文摘To test the influence of binder strength, porous concretes with 4 binder strengths between 30.0-135.0 MPa and 5 void ratios between 15%-35% were tested. The results indicated that for the same aggregate, the rates of strength reduction due to the increases in void ratio were the same for binders with different strengths. To study the influence of aggregate size, 3 single size aggregates with nominal sizes of 5.0, 13.0 and 20.0 mm (Nos. 7, 6 and 5 according to JIS A 5001) were used to make porous concrete. The strengths of porous concrete are found to be dependent on aggregate size. The rate of strength reduction of porous concrete with small aggregate size is found to be higher than that with larger aggregate size. At the same void ratio, the strength of porous concrete with large aggregate is larger than that with small aggregate. The general equations for porous concrete are related to compressive strength and void ratio for different binder strengths and aggregate sizes.
文摘For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate lateral spreading displacements, and the forces acting on the piles from the liquefied soils in order to perform post liquefaction stability analyses. The most commonly used methods to estimate the undrained residual shear strength (Su~) of liquefied sand deposits are based on the correlations determined from liquefaction induced flow failures with SPT and CPT data. In this study, 44 lateral spread case histories are analyzed and a new relationship based on only lateral spread case histories is recommended, which estimates the residual shear strength ratio of the liquefiable soil layer from normalized shear wave velocity. The new proposed method is also utilized to estimate the residual lateral displacement of an example bridge problem in an area susceptible to lateral spreading in order to provide insight into how the proposed relationship can be used in geotechnical engineering practice.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.
基金supported by National Natural Science Foundation of China(Grant No.51975146)Key Research and Development Plan in Shandong Province(Grant No.2018JMRH0412,2019JZZY010364)National Defense Basic Scientific Research of China(Grant no.JCK2018603C017)。
文摘Multi-direction impact forging(MDIF)was applied to the as-extruded ZK60 Mg alloy,and the microstructure,texture evolution and yield strength symmetry were investigated in the current study.The results showed that the average grain size of forged piece was greatly refined to 5.3μm after 120 forging passes,which was ascribed to the segmenting effect of{10–12}twins and the subsequent multiple rounds of dynamic recrystallization(DRX).A great deal of{10–12}twins were activated at the beginning of MDIF process,which played an important role in grain refinement.With forging proceeding,continuous and discontinuous DRX were successively activated,resulting in the fully DRXed microstructure.Meanwhile,the forged piece exhibited a unique four-peak texture,and the initial<10-10>//ED fiber texture component gradually evolved into multiple texture components composed of<0001>//FFD(first forging direction)and<11–20>//FFD texture.The special strain path was the key to the formation of the unique four-peak texture.The{10–12}twinning and basal slip were two dominant factors to the evolution of texture during MDIF process.Grain strengthening and dislocation strengthening were two main strengthening mechanisms of the forged piece.Besides,the symmetry of yield strength was greatly improved by MDIF process.
文摘In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th e rock m assp aram eters from in -situ investigations w ith th e stre n g th p a ram eters o f jo in ted rocks obtain ed fromlaboratory scale ex p erim en tal observations. Using th e co n stitu tiv e relation, th e a u th o r derived a p ressu reand d am age sensitive plastic p a ra m e te r to d ete rm in e stre n g th o f rock m asses for varied ex te n ts ofd isco n tin u ity an d p ressu re induced dam age. The te s t results show th a t plasticity characterized byhard en in g an d softening inclusive o f dam ag e invariably d e p en d s u p o n m ean p ressu re an d e x te n t ofdefo rm atio n s alread y experien ced by rock m asses. The p re se n t w ork explores th e te s t d a ta th a t revealth e d ep en d en c e o f in -situ stren g th on increm ental jo in t p ara m e te rs o b tain ed from th e jo in t num ber,jo in t orien tatio n , jo in t roughness, gouge p a ram eters an d w a te r pressure. S ubstituting th e relationshipb e tw e e n th e RQD and m odified jo in t factor w ith th a t b e tw e e n m odulus ratio an d stren g th ratio, th em odel show s successfully th a t using d am age inclusive plastic p a ra m e te r an d RQD provides a relationshipfor estim atin g th e stre n g th o f rock m asses. One o f th e m ain objectives o f this w ork is to illustrate th a t th ep re se n t m odel is sensitive to p la s tic ity a n d dam ag e to g e th e r in estim atin g in -situ stre n g th o f rock m assesin foundations, u n d e rg ro u n d excavation an d tunnels.
文摘Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.