In this paper, we propose a discrete ratio-dependent predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model undergoes fold bifurcation a...In this paper, we propose a discrete ratio-dependent predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model undergoes fold bifurcation and flip bifurcation by using bifurcation theory and the method of approximation by a flow. Numerical simulations are presented not only to demonstrate the consistence with our theoretical analyses, but also to exhibit the complex dynamical behaviors, such as the cascade of period-doubling bifurcation in period-2 and the chaotic sets. The Maximum Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. These results show that the direct discrete method has more rich dynamic behaviors than the discrete model obtained by Euler method.展开更多
Subject to the homogeneous Neumann boundary condition, a ratio-dependent predator-prey reaction diffusion model is discussed. An improved result for the model is derived, that is, the unique positive constant steady s...Subject to the homogeneous Neumann boundary condition, a ratio-dependent predator-prey reaction diffusion model is discussed. An improved result for the model is derived, that is, the unique positive constant steady state is the global stability. This is done using the comparison principle and establishing iteration schemes involving positive solutions supremum and infimum. The result indicates that the two species will ultimately distribute homogeneously in space. In fact, the comparison argument and iteration technique to be used in this paper can be applied to some other models. This method deals with the not-existence of a non-constant positive steady state for some reaction diffusion systems, which is rather simple but sufficiently effective.展开更多
This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions fo...This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.展开更多
This article addresses a stochastic ratio-dependent predator-prey system with Leslie-Gower and Holling type II schemes. Firstly, the existence of the global positive solution is shown by the comparison theorem of stoc...This article addresses a stochastic ratio-dependent predator-prey system with Leslie-Gower and Holling type II schemes. Firstly, the existence of the global positive solution is shown by the comparison theorem of stochastic differential equations. Secondly, in the case of persistence, we prove that there exists a ergodic stationary distribution. Finally, numerical simulations for a hypothetical set of parameter values are presented to illustrate the analytical findings.展开更多
We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence de...We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.展开更多
This article is concerned with the existence of traveling wave solutions for a discrete diffusive ratio-dependent predator-prey model. By applying Schauder’s fixed point theorem with the help of suitable upper and lo...This article is concerned with the existence of traveling wave solutions for a discrete diffusive ratio-dependent predator-prey model. By applying Schauder’s fixed point theorem with the help of suitable upper and lower solutions, we prove that there exists a positive constant c* such that when c > c* , the discrete diffusive predator-prey system admits an invasion traveling wave. The existence of an invasion traveling wave with c = c* is also established by a limiting argument and a delicate analysis of the boundary conditions.Finally, by the asymptotic spreading theory and the comparison principle, the non-existence of invasion traveling waves with speed c < c* is also proved.展开更多
In this paper, we investigate the dynamics of a stochastic predator-prey model with ratio-dependent functional response and disease in the prey. Firstly, we prove the existence and uniqueness of the positive solution ...In this paper, we investigate the dynamics of a stochastic predator-prey model with ratio-dependent functional response and disease in the prey. Firstly, we prove the existence and uniqueness of the positive solution for the stochastic model by using conventional methods. Then we obtain the threshold <img alt="" src="Edit_0a62b9be-7934-457b-aca3-af3420f5b5ee.png" /> for the infected prey population, that is, the disease will tend to extinction if <img alt="" src="Edit_e6cd63f6-de07-42be-a22a-8750d6c8aac9.png" />< 1, and it will exist in the long time if <img alt="" src="Edit_5964fdd8-a9fe-4dc2-b897-f4206f046f65.png" />> 1. Finally, the sufficient condition on the existence of a unique ergodic stationary distribution is obtained, which indicates that all the populations are permanent in the time mean sense. Numerical simulations are conducted to verify our analysis results.展开更多
A ratio dependent predator-prey system with Holling type Ⅲ functional response is considered. A sufficient condition of the global asymptotic stability for the positive equilibrium and existence of the limit cycle ar...A ratio dependent predator-prey system with Holling type Ⅲ functional response is considered. A sufficient condition of the global asymptotic stability for the positive equilibrium and existence of the limit cycle are given by studying locally asymp- totic stability of the positive equilibrium. The condition under which positive equilibrium is not a hyperbolic equilibrium is investigated using Hopf bifurcation.展开更多
This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predato...This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predator-prey model, the sufficient conditions for diffusion-driven instability with Neumann boundary conditions are obtained. Furthermore, it presents novel numerical evidence of time evolution of patterns controlled by diffusion in the model, and finds that the model dynamics exhibits complex pattern replication, and the pattern formation depends on the choice of the initial conditions. The ideas in this paper may provide a better understanding of the pattern formation in ecosystems.展开更多
Influences of prey refuge on the dynamics of a predator-prey model with ratio-dependent functional response are investigated. The local and global stability of positive equilibrium of the system are considered. Theore...Influences of prey refuge on the dynamics of a predator-prey model with ratio-dependent functional response are investigated. The local and global stability of positive equilibrium of the system are considered. Theoretical analysis indicates that constant refuge leads to the system undergo supercritical Hopf bifurcation twice with the birth rate of prey species changing continuously.展开更多
In this paper, a SEIR model with ratio-dependent transmission rate in the form ?is studied and the basic reproduction number which determines the disease’s extinction or continued existence is obtained. By constructi...In this paper, a SEIR model with ratio-dependent transmission rate in the form ?is studied and the basic reproduction number which determines the disease’s extinction or continued existence is obtained. By constructing the proper Lyapunov function, we prove that if R0 ≤ 1, the disease-free equilibrium point of the model is globally asymptotically stable and the disease always dies out;if R0 > 1, the endemic equilibrium point is globally asymptotically stable and the disease persists.展开更多
In this paper, the dynamics of a stochastic ratio-dependent predator-prey system with markovian switching and Lévy noise is studied. Firstly, we show the existence condition of global positive solution under the ...In this paper, the dynamics of a stochastic ratio-dependent predator-prey system with markovian switching and Lévy noise is studied. Firstly, we show the existence condition of global positive solution under the given positive initial value. Secondly, sufficient conditions for system extinction and persistence are obtained through some assumptions. Then, the sufficient conditions of stochastically persistence are obtained by combining stochastic analysis technique and M-matrix analysis. In addition, under appropriate conditions, we demonstrate the existence of a unique stationary distribution for a system without Lévy jumps. Finally, the empirical and Mlistein methods are used to verify the theoretical results through numerical simulation.展开更多
In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least two positi...In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least two positive periodic solutions of this model.展开更多
The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By m...The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By means of the coincidence degree theory, sufficient conditions for the existence of at least one positive periodic solution of this model are established. Moreover, The author shows that the system is uniformly persistent under the conditions.展开更多
In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reac...In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reaction-diffusion system and its corresponding steady-state problem. We first apply various Lyapunov functions to discuss the global stability of the unique positive constant steady-state. Then, for the steady-state system, we establish some a priori upper and lower estimates for positive steady-states, and derive several results for non-existence of positive non-constant steady-states if the diffusion rates are large or small.展开更多
In this paper, a delayed ratio-dependent Holling-III predator-prey system with stagestructured and impulsive stocking on prey and continuous harvesting on predator is considered. The authors obtain sufficient conditio...In this paper, a delayed ratio-dependent Holling-III predator-prey system with stagestructured and impulsive stocking on prey and continuous harvesting on predator is considered. The authors obtain sufficient conditions of the global attractivity of predator-extinction periodic solution and the permanence of the system. These' results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system. The authors also prove that all solutions of the system are uniformly ultimately bounded. The results show that the biological resource management is effective and reliable. Key words Globally attractivity, impulsive effect, permanence, ratio-dependent, stage-structured.展开更多
In this paper, we consider a three-species ratio-dependent predator-prey model governed by difference equations with periodic coefficients. By using the method of coincidence degree, we discuss the existence of positi...In this paper, we consider a three-species ratio-dependent predator-prey model governed by difference equations with periodic coefficients. By using the method of coincidence degree, we discuss the existence of positive periodic solutions of this system, a set of easily verifiable sufficient conditions are derived.展开更多
Ratio-dependent predator prey models are favored by many animal ecologists recently as more suitable ones for predator-prey interactions where predation involves searching process. In this paper, a ratio-dependent pre...Ratio-dependent predator prey models are favored by many animal ecologists recently as more suitable ones for predator-prey interactions where predation involves searching process. In this paper, a ratio-dependent predator prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.展开更多
The dynamical behaviors of a two-species discrete ratio-dependent predator-prey sys- tem are considered. Some sufficient conditions for the local stability of the equilibria is obtained by using the linearization meth...The dynamical behaviors of a two-species discrete ratio-dependent predator-prey sys- tem are considered. Some sufficient conditions for the local stability of the equilibria is obtained by using the linearization method. Further, we also obtain a new sufficient condition to ensure that the positive equilibrium is globally asymptotically stable by using an iteration scheme and the comparison principle of difference equations, which generalizes what paper [G. Chen, Z. Teng and Z. Hu, Analysis of stability for a discrete ratio-dependent predator-prey system, Indian J. Pure Appl. Math. 42(1) (2011) 1-26] has done. The method given in this paper is new and very resultful comparing with papers [H. F. Huo and W. T. Li, Existence and global stability of periodic solutions of a discrete predator--prey system with delays, Appl. Math. Comput. 153 (2004) 337-351; X. Liao, S. Zhou and Y. Chen, On permanence and global stability in a general Gilpin- Ayala competition predator prey discrete system, Appl. Math. Comput. 190 (2007) 500-509] and it can also be applied to study the global asymptotic stability for general multiple species discrete population systems. At the end of this paper, we present an open question.展开更多
This paper deals with the problem of nonconstant harvesting of prey in a ratio-dependent predator-prey system incorporating a constant prey refuge. Here we use the reasonable catch-rate function instead of usual catch...This paper deals with the problem of nonconstant harvesting of prey in a ratio-dependent predator-prey system incorporating a constant prey refuge. Here we use the reasonable catch-rate function instead of usual catch-per-unit-effort hypothesis. The existence, as well as the stability of possible equilibria, is carried out. Bionomic equilibrium of the system is determined and optimal harvest policy is studied with the help of Pontryagin's maximum principle. The key results developed in this paper are illustrated using numer- ical simulations. Our results indicate that dynamic behavior of the system very much depends on the prey refuge parameter and increasing amount of refuge could increase prey density and may lead to the extinction of predator population density.展开更多
文摘In this paper, we propose a discrete ratio-dependent predator-prey system. The stability of the fixed points of this model is studied. At the same time, it is shown that the discrete model undergoes fold bifurcation and flip bifurcation by using bifurcation theory and the method of approximation by a flow. Numerical simulations are presented not only to demonstrate the consistence with our theoretical analyses, but also to exhibit the complex dynamical behaviors, such as the cascade of period-doubling bifurcation in period-2 and the chaotic sets. The Maximum Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. These results show that the direct discrete method has more rich dynamic behaviors than the discrete model obtained by Euler method.
文摘Subject to the homogeneous Neumann boundary condition, a ratio-dependent predator-prey reaction diffusion model is discussed. An improved result for the model is derived, that is, the unique positive constant steady state is the global stability. This is done using the comparison principle and establishing iteration schemes involving positive solutions supremum and infimum. The result indicates that the two species will ultimately distribute homogeneously in space. In fact, the comparison argument and iteration technique to be used in this paper can be applied to some other models. This method deals with the not-existence of a non-constant positive steady state for some reaction diffusion systems, which is rather simple but sufficiently effective.
文摘This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.
基金supported by NSFC of China Grant(11371085)the Fundamental Research Funds for the Central Universities(15CX08011A)
文摘This article addresses a stochastic ratio-dependent predator-prey system with Leslie-Gower and Holling type II schemes. Firstly, the existence of the global positive solution is shown by the comparison theorem of stochastic differential equations. Secondly, in the case of persistence, we prove that there exists a ergodic stationary distribution. Finally, numerical simulations for a hypothetical set of parameter values are presented to illustrate the analytical findings.
基金Supported by the China Postdoctoral Science Foundation (20060400267)
文摘We study a non-autonomous ratio-dependent predator-prey model with exploited terms. This model is of periodic coefficients, which incorporates the periodicity of the varying environment. By means of the coincidence degree theory, we establish sufficient conditions for the existence of at least four positive periodic solutions of this model.
基金supported by NSF of China(11861056)Gansu Provincial Natural Science Foundation(18JR3RA093).
文摘This article is concerned with the existence of traveling wave solutions for a discrete diffusive ratio-dependent predator-prey model. By applying Schauder’s fixed point theorem with the help of suitable upper and lower solutions, we prove that there exists a positive constant c* such that when c > c* , the discrete diffusive predator-prey system admits an invasion traveling wave. The existence of an invasion traveling wave with c = c* is also established by a limiting argument and a delicate analysis of the boundary conditions.Finally, by the asymptotic spreading theory and the comparison principle, the non-existence of invasion traveling waves with speed c < c* is also proved.
文摘In this paper, we investigate the dynamics of a stochastic predator-prey model with ratio-dependent functional response and disease in the prey. Firstly, we prove the existence and uniqueness of the positive solution for the stochastic model by using conventional methods. Then we obtain the threshold <img alt="" src="Edit_0a62b9be-7934-457b-aca3-af3420f5b5ee.png" /> for the infected prey population, that is, the disease will tend to extinction if <img alt="" src="Edit_e6cd63f6-de07-42be-a22a-8750d6c8aac9.png" />< 1, and it will exist in the long time if <img alt="" src="Edit_5964fdd8-a9fe-4dc2-b897-f4206f046f65.png" />> 1. Finally, the sufficient condition on the existence of a unique ergodic stationary distribution is obtained, which indicates that all the populations are permanent in the time mean sense. Numerical simulations are conducted to verify our analysis results.
文摘A ratio dependent predator-prey system with Holling type Ⅲ functional response is considered. A sufficient condition of the global asymptotic stability for the positive equilibrium and existence of the limit cycle are given by studying locally asymp- totic stability of the positive equilibrium. The condition under which positive equilibrium is not a hyperbolic equilibrium is investigated using Hopf bifurcation.
基金supported by the Natural Science Foundation of Zhejiang Province of China (Grant No.Y7080041)
文摘This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatially distributed population with diffusion in a Holling-III ratio-dependent predator-prey model, the sufficient conditions for diffusion-driven instability with Neumann boundary conditions are obtained. Furthermore, it presents novel numerical evidence of time evolution of patterns controlled by diffusion in the model, and finds that the model dynamics exhibits complex pattern replication, and the pattern formation depends on the choice of the initial conditions. The ideas in this paper may provide a better understanding of the pattern formation in ecosystems.
基金Supported by the NNSF of China(11126284)Supported by the NSF of Department of Education of Henan Province(12A110012)Supported by the Young Scientific Research Foundation of Henan Normal University(1001)
文摘Influences of prey refuge on the dynamics of a predator-prey model with ratio-dependent functional response are investigated. The local and global stability of positive equilibrium of the system are considered. Theoretical analysis indicates that constant refuge leads to the system undergo supercritical Hopf bifurcation twice with the birth rate of prey species changing continuously.
文摘In this paper, a SEIR model with ratio-dependent transmission rate in the form ?is studied and the basic reproduction number which determines the disease’s extinction or continued existence is obtained. By constructing the proper Lyapunov function, we prove that if R0 ≤ 1, the disease-free equilibrium point of the model is globally asymptotically stable and the disease always dies out;if R0 > 1, the endemic equilibrium point is globally asymptotically stable and the disease persists.
文摘In this paper, the dynamics of a stochastic ratio-dependent predator-prey system with markovian switching and Lévy noise is studied. Firstly, we show the existence condition of global positive solution under the given positive initial value. Secondly, sufficient conditions for system extinction and persistence are obtained through some assumptions. Then, the sufficient conditions of stochastically persistence are obtained by combining stochastic analysis technique and M-matrix analysis. In addition, under appropriate conditions, we demonstrate the existence of a unique stationary distribution for a system without Lévy jumps. Finally, the empirical and Mlistein methods are used to verify the theoretical results through numerical simulation.
基金Supported by the National Natural Science Foundation of China (No.19531070)
文摘In this paper, we study a non-autonomous ratio-dependent predator-prey model with exploited term. By means of the coincidence degree theory, we establish a sufficient condition for the existence of at least two positive periodic solutions of this model.
基金The research is supported by the Scientific Research Foundation of the Doctor Department of Hubei University of Technology.
文摘The author considers a three-species ratio-dependent predator-prey model with time delay in a two-patch environments. This model is of periodic coefficients, which incorporates the periodicity of the environment. By means of the coincidence degree theory, sufficient conditions for the existence of at least one positive periodic solution of this model are established. Moreover, The author shows that the system is uniformly persistent under the conditions.
基金the National Natural Science Foundation of China (Grant Nos. 10801090, 10726016,10771032)the Scientific Innovation Team Project of Hubei Provincial Department of Education (Grant No.T200809)
文摘In this paper, we investigate a prey-predator model with diffusion and ratio-dependent functional response subject to the homogeneous Neumann boundary condition. Our main focuses are on the global behavior of the reaction-diffusion system and its corresponding steady-state problem. We first apply various Lyapunov functions to discuss the global stability of the unique positive constant steady-state. Then, for the steady-state system, we establish some a priori upper and lower estimates for positive steady-states, and derive several results for non-existence of positive non-constant steady-states if the diffusion rates are large or small.
文摘In this paper, a delayed ratio-dependent Holling-III predator-prey system with stagestructured and impulsive stocking on prey and continuous harvesting on predator is considered. The authors obtain sufficient conditions of the global attractivity of predator-extinction periodic solution and the permanence of the system. These' results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system. The authors also prove that all solutions of the system are uniformly ultimately bounded. The results show that the biological resource management is effective and reliable. Key words Globally attractivity, impulsive effect, permanence, ratio-dependent, stage-structured.
基金Supported by National Natural Sciences Foundation of P.R.China (No.10171010 and 10201005)the Key Project on Science and Technology of the Education Ministry of P.R.China(No.01061)
文摘In this paper, we consider a three-species ratio-dependent predator-prey model governed by difference equations with periodic coefficients. By using the method of coincidence degree, we discuss the existence of positive periodic solutions of this system, a set of easily verifiable sufficient conditions are derived.
文摘Ratio-dependent predator prey models are favored by many animal ecologists recently as more suitable ones for predator-prey interactions where predation involves searching process. In this paper, a ratio-dependent predator prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.
文摘The dynamical behaviors of a two-species discrete ratio-dependent predator-prey sys- tem are considered. Some sufficient conditions for the local stability of the equilibria is obtained by using the linearization method. Further, we also obtain a new sufficient condition to ensure that the positive equilibrium is globally asymptotically stable by using an iteration scheme and the comparison principle of difference equations, which generalizes what paper [G. Chen, Z. Teng and Z. Hu, Analysis of stability for a discrete ratio-dependent predator-prey system, Indian J. Pure Appl. Math. 42(1) (2011) 1-26] has done. The method given in this paper is new and very resultful comparing with papers [H. F. Huo and W. T. Li, Existence and global stability of periodic solutions of a discrete predator--prey system with delays, Appl. Math. Comput. 153 (2004) 337-351; X. Liao, S. Zhou and Y. Chen, On permanence and global stability in a general Gilpin- Ayala competition predator prey discrete system, Appl. Math. Comput. 190 (2007) 500-509] and it can also be applied to study the global asymptotic stability for general multiple species discrete population systems. At the end of this paper, we present an open question.
文摘This paper deals with the problem of nonconstant harvesting of prey in a ratio-dependent predator-prey system incorporating a constant prey refuge. Here we use the reasonable catch-rate function instead of usual catch-per-unit-effort hypothesis. The existence, as well as the stability of possible equilibria, is carried out. Bionomic equilibrium of the system is determined and optimal harvest policy is studied with the help of Pontryagin's maximum principle. The key results developed in this paper are illustrated using numer- ical simulations. Our results indicate that dynamic behavior of the system very much depends on the prey refuge parameter and increasing amount of refuge could increase prey density and may lead to the extinction of predator population density.