The paper discusses the relationship between weights and control vertices of two rational NURBS curves of degree two or three with all weights larger than zero when they represent the same curve parametrically and geo...The paper discusses the relationship between weights and control vertices of two rational NURBS curves of degree two or three with all weights larger than zero when they represent the same curve parametrically and geometrically, and gives sufficient and necessary conditions for coincidence of two rational NURBS curves in non-degeneracy case.展开更多
By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the ...By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.展开更多
Necessary and sufficient conditions for the relationship of weights and control points of two parametrically and geometrically coincident rational Bézier or NURBS curves are discussed in detail. The method is bas...Necessary and sufficient conditions for the relationship of weights and control points of two parametrically and geometrically coincident rational Bézier or NURBS curves are discussed in detail. The method is based on the reduction of matrices and transformation between rational Bézier curves and NURBS curves.展开更多
文摘The paper discusses the relationship between weights and control vertices of two rational NURBS curves of degree two or three with all weights larger than zero when they represent the same curve parametrically and geometrically, and gives sufficient and necessary conditions for coincidence of two rational NURBS curves in non-degeneracy case.
文摘By adopting the method of controlling parameters this paper describes the construction of various kinds of cubic curve segment and curved surface fragment with rational and non rational parameters, and discusses the relationship between controlling parameters, weighted factors and types, kinds and characteristics of curve segments and curved surface fragments. A mathematical method is provided for CAGD with abundant connotations, broad covering region, convenience, flexibility and direct simplicity.
文摘Necessary and sufficient conditions for the relationship of weights and control points of two parametrically and geometrically coincident rational Bézier or NURBS curves are discussed in detail. The method is based on the reduction of matrices and transformation between rational Bézier curves and NURBS curves.