Using the method of construction, with the help of inequalities, we research the Muntz rational approximation of two kinds of special function classes, and give the corresponding estimates of approximation rates of th...Using the method of construction, with the help of inequalities, we research the Muntz rational approximation of two kinds of special function classes, and give the corresponding estimates of approximation rates of these classes under widely con- ditions. Because of the Orlicz Spaces is bigger than continuous function space and the Lp space, so the results of this paper has a certain expansion significance.展开更多
In this paper, we research the Miintz rational approximation of two kinds of spe- cial function classes, and give the corresponding estimates of approximation rates of these classes.
Recently we have reported a new method of rational approximation of the sinc function obtained by sampling and the Fourier transforms. However, this method requires a trigonometric multiplier that originates from the ...Recently we have reported a new method of rational approximation of the sinc function obtained by sampling and the Fourier transforms. However, this method requires a trigonometric multiplier that originates from the shifting property of the Fourier transform. In this work, we show how to represent the Fourier transform of a function <em>f</em>(<em>t</em>) in form of a ratio of two polynomials without any trigonometric multiplier. A MATLAB code showing algorithmic implementation of the proposed method for rational approximation of the Fourier transform is presented.展开更多
We use a combination of both algebraic and numerical techniques to construct a C-1-continuous, piecewise (m, n) rational epsilon-approximation of a real algebraic plane curve of degree d. At singular points we use the...We use a combination of both algebraic and numerical techniques to construct a C-1-continuous, piecewise (m, n) rational epsilon-approximation of a real algebraic plane curve of degree d. At singular points we use the classical Weierstrass Preparation Theorem and Newton power series factorizations, based on the technique of Hensel lifting. These, together with modified rational Pade approximations, are used to efficiently construct locally approximate, rational parametric representations for all real branches of an algebraic plane curve. Besides singular points we obtain an adaptive selection of simple points about which the curve approximations yield a small number of pieces yet achieve C-1 continuity between pieces. The simpler cases of C-1 and C-0 continuity are also handled in a similar manner. The computation of singularity, the approximation error bounds and details of the implementation of these algorithms are also provided.展开更多
The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve ...The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve the same polynomial or rational polynomial representations, it arouses difficulty in applications. Thus approximation methods have been introduced to solve this problem. In this paper, it has been pointed out that the crux of offset curve approximation lies in the approximation of parametric speed. Based on the Jacobi polynomial approximation theory with endpoints interpolation, an algebraic rational approximation algorithm of offset curve, which preserves the direction of normal, is presented.展开更多
The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numeri...The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numerical results show the efficiency of this new approach.展开更多
This paper presents an adaptive rationalized Haar function approximation method to obtain the optimal injection strategy for alkali-surfactant-polymer(ASP) flooding. In this process, the non-uniform control vector par...This paper presents an adaptive rationalized Haar function approximation method to obtain the optimal injection strategy for alkali-surfactant-polymer(ASP) flooding. In this process, the non-uniform control vector parameterization is introduced to convert original problem into a multistage optimization problem, in which a new normalized time variable is adopted on the combination of the subinterval length. Then the rationalized Haar function approximation method, in which an auxiliary function is introduced to dispose path constraints, is used to transform the multistage problem into a nonlinear programming. Furthermore, an adaptive strategy proposed on the basis of errors is adopted to regulate the order of Haar function vectors. Finally, the nonlinear programming for ASP flooding is solved by sequential quadratic programming. To illustrate the performance of proposed method,the experimental comparison method and control vector parameterization(CVP) method are introduced to optimize the original problem directly. By contrastive analysis of results, the accuracy and efficiency of proposed method are confirmed.展开更多
In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches ...In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches zero.展开更多
Let Γ be a regular curve and Lp (Γ), 1<p<+∞. be the class of all complex - valued functions f de-fined on Γ which are such that |f|p is mtegrabie in sense of Lebesgue. In this work, we define the k th p-Fabc...Let Γ be a regular curve and Lp (Γ), 1<p<+∞. be the class of all complex - valued functions f de-fined on Γ which are such that |f|p is mtegrabie in sense of Lebesgue. In this work, we define the k th p-Fabcrpolynomial F k,p (z),the kth p-Faber principle part F k.p (1/z) for Γ , and defined the nth p-Fcber- Laurent rational function Rn.p (f, z) and p- generalized modulus of continuity Ωp(f, t) of a function f of Lp(Γ) We inves-tigate some properties of Fk,p (z) and Fk.p (1/z). And then we prove a direct theorem characterizing the degree of approximation with respect to Ω (. , t) in the mean of functions of Lp(Γ) by the rational junctions Rn.p (. . z).展开更多
Let f be a function, continuous and real valued on the segment △,△ (-∞,∞) and {Rn} be the sequence of the rational functions of best uniform approximation to fon △ of order (n,n). In the present work, the converg...Let f be a function, continuous and real valued on the segment △,△ (-∞,∞) and {Rn} be the sequence of the rational functions of best uniform approximation to fon △ of order (n,n). In the present work, the convergence of {Rn} in the complex plane is considered for the special caseswhen the poles (or the zeros, respectively) of {Rn} accumulate in the terms of weak convergence of measures to acompact set of zera capacity.As a consequence, sufficient conditions for the holomorphic and the meromorphic continuability of fare given.展开更多
A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In th...A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In the improved Oustaloup method, the turning frequency points are determined by the adaptive chaotic particle swarm optimization (PSO). The average velocity is proposed to reduce the iterations of the PSO. The chaotic search scheme is combined to reduce the opportunity of the premature phenomenon. Two fitness functions are given to minimize the zero-pole and amplitude-phase frequency errors for the underlying optimization problems. Some numerical examples are compared to demonstrate the effectiveness and accuracy of this proposed rational approximation method.展开更多
The approximation of |x| by rational functions is a classical rationalproblem. This paper deals with the rational approximation of the function xasgnx, which equals |x| if α=1. We construct a Newman type operator...The approximation of |x| by rational functions is a classical rationalproblem. This paper deals with the rational approximation of the function xasgnx, which equals |x| if α=1. We construct a Newman type operator rn(x) and show max|x|≤1{|x^αsgnx-rn(x)|}-Cn-α/2e-√2nα where C is a constant depending on α.展开更多
In the present note,we consider the problem:how many interpolation nodes can be deleted from the Newman-type rational function such that the convergence rate still achieve.
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topolo...In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.展开更多
The gas quenching is a modern, effective processing technology. On the basis of nonlinear surface heat-transfer coefficient obtained by Cheng during the gas quenching, the coupled problem between temperature and phase...The gas quenching is a modern, effective processing technology. On the basis of nonlinear surface heat-transfer coefficient obtained by Cheng during the gas quenching, the coupled problem between temperature and phase transformation during gas quenching in high pressure was simulated by means of finite element method. In the numerical calculation, the thermal physical properties were treated as the functions of temperature and the volume fraction of phase constituents. In order to avoid effectual "oscillation" of the numerical solutions under smaller time step, the Norsette rational approximate method was used.展开更多
Appealing to the Clifford analysis and matching pursuits, we study the adaptive decompositions of functions of several variables of finite energy under the dictionaries consisting of shifted Cauchy kernels. This is a ...Appealing to the Clifford analysis and matching pursuits, we study the adaptive decompositions of functions of several variables of finite energy under the dictionaries consisting of shifted Cauchy kernels. This is a realization of matching pursuits among shifted Cauchy kernels in higher-dimensional spaces. It offers a method to process signals in arbitrary dimensions.展开更多
The present paper constructs a set of nodes which can generate a rationalinterpolating function to approximate |x|at the rate of O(1/(nk log n))for any givennatural number κ.More importantly.this construction reveals...The present paper constructs a set of nodes which can generate a rationalinterpolating function to approximate |x|at the rate of O(1/(nk log n))for any givennatural number κ.More importantly.this construction reveals the fact that the higherdensity the distribution of a set of nodes has to zero (that is the singular point of thefunction |x|!),the better the rational interpolation approximation behaves.This probablyalso provides an idea to construct more valuable sets of nodes in the future.展开更多
Approximation to the function |x| plays an important role in approximation theory. This paper studies the approximation to the function xαsgn x, which equals |x| if α = 1. We construct a Newman Type Operator rn...Approximation to the function |x| plays an important role in approximation theory. This paper studies the approximation to the function xαsgn x, which equals |x| if α = 1. We construct a Newman Type Operator rn(x) and prove max |x|≤1|xαsgn x-rn(x)|~Cn1/4e-π1/2(1/2)αn.展开更多
Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the mu...Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic structure calculations.展开更多
基金supported by the National Science Foundation of China(No.11161033)Inner Mongolia Normal University Talent Project Foundation(No.RCPY-2-2012-K-036)
文摘Using the method of construction, with the help of inequalities, we research the Muntz rational approximation of two kinds of special function classes, and give the corresponding estimates of approximation rates of these classes under widely con- ditions. Because of the Orlicz Spaces is bigger than continuous function space and the Lp space, so the results of this paper has a certain expansion significance.
基金Supported by the National Natural Science Foundation of China(11161033)Inner Mongolia Natural Science Foundation (2009MS0105)
文摘In this paper, we research the Miintz rational approximation of two kinds of spe- cial function classes, and give the corresponding estimates of approximation rates of these classes.
文摘Recently we have reported a new method of rational approximation of the sinc function obtained by sampling and the Fourier transforms. However, this method requires a trigonometric multiplier that originates from the shifting property of the Fourier transform. In this work, we show how to represent the Fourier transform of a function <em>f</em>(<em>t</em>) in form of a ratio of two polynomials without any trigonometric multiplier. A MATLAB code showing algorithmic implementation of the proposed method for rational approximation of the Fourier transform is presented.
文摘We use a combination of both algebraic and numerical techniques to construct a C-1-continuous, piecewise (m, n) rational epsilon-approximation of a real algebraic plane curve of degree d. At singular points we use the classical Weierstrass Preparation Theorem and Newton power series factorizations, based on the technique of Hensel lifting. These, together with modified rational Pade approximations, are used to efficiently construct locally approximate, rational parametric representations for all real branches of an algebraic plane curve. Besides singular points we obtain an adaptive selection of simple points about which the curve approximations yield a small number of pieces yet achieve C-1 continuity between pieces. The simpler cases of C-1 and C-0 continuity are also handled in a similar manner. The computation of singularity, the approximation error bounds and details of the implementation of these algorithms are also provided.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312101) and the National Natural Science Foun-dation of China (Nos. 60373033 and 60333010)
文摘The problem of parametric speed approximation of a rational curve is raised in this paper. Offset curves are widely used in various applications. As for the reason that in most cases the offset curves do not preserve the same polynomial or rational polynomial representations, it arouses difficulty in applications. Thus approximation methods have been introduced to solve this problem. In this paper, it has been pointed out that the crux of offset curve approximation lies in the approximation of parametric speed. Based on the Jacobi polynomial approximation theory with endpoints interpolation, an algebraic rational approximation algorithm of offset curve, which preserves the direction of normal, is presented.
文摘The Legendre rational approximation is investigated. Some approximation results are established, which form the mathematical foundation of a new spectral method on the whole line. A model problem is considered. Numerical results show the efficiency of this new approach.
基金Supported by the National Natural Science Foundation of China(61573378)the Fundamental Research Funds for the Central Universities(15CX06064A)
文摘This paper presents an adaptive rationalized Haar function approximation method to obtain the optimal injection strategy for alkali-surfactant-polymer(ASP) flooding. In this process, the non-uniform control vector parameterization is introduced to convert original problem into a multistage optimization problem, in which a new normalized time variable is adopted on the combination of the subinterval length. Then the rationalized Haar function approximation method, in which an auxiliary function is introduced to dispose path constraints, is used to transform the multistage problem into a nonlinear programming. Furthermore, an adaptive strategy proposed on the basis of errors is adopted to regulate the order of Haar function vectors. Finally, the nonlinear programming for ASP flooding is solved by sequential quadratic programming. To illustrate the performance of proposed method,the experimental comparison method and control vector parameterization(CVP) method are introduced to optimize the original problem directly. By contrastive analysis of results, the accuracy and efficiency of proposed method are confirmed.
基金This research is suported by National Science foundation Grant.
文摘In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches zero.
文摘Let Γ be a regular curve and Lp (Γ), 1<p<+∞. be the class of all complex - valued functions f de-fined on Γ which are such that |f|p is mtegrabie in sense of Lebesgue. In this work, we define the k th p-Fabcrpolynomial F k,p (z),the kth p-Faber principle part F k.p (1/z) for Γ , and defined the nth p-Fcber- Laurent rational function Rn.p (f, z) and p- generalized modulus of continuity Ωp(f, t) of a function f of Lp(Γ) We inves-tigate some properties of Fk,p (z) and Fk.p (1/z). And then we prove a direct theorem characterizing the degree of approximation with respect to Ω (. , t) in the mean of functions of Lp(Γ) by the rational junctions Rn.p (. . z).
基金The work is supported by Project 69 with Ministry of ScienceEducation, Bulgaria.
文摘Let f be a function, continuous and real valued on the segment △,△ (-∞,∞) and {Rn} be the sequence of the rational functions of best uniform approximation to fon △ of order (n,n). In the present work, the convergence of {Rn} in the complex plane is considered for the special caseswhen the poles (or the zeros, respectively) of {Rn} accumulate in the terms of weak convergence of measures to acompact set of zera capacity.As a consequence, sufficient conditions for the holomorphic and the meromorphic continuability of fare given.
基金supported by the National Natural Science Foundation of China (10872030)
文摘A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In the improved Oustaloup method, the turning frequency points are determined by the adaptive chaotic particle swarm optimization (PSO). The average velocity is proposed to reduce the iterations of the PSO. The chaotic search scheme is combined to reduce the opportunity of the premature phenomenon. Two fitness functions are given to minimize the zero-pole and amplitude-phase frequency errors for the underlying optimization problems. Some numerical examples are compared to demonstrate the effectiveness and accuracy of this proposed rational approximation method.
文摘The approximation of |x| by rational functions is a classical rationalproblem. This paper deals with the rational approximation of the function xasgnx, which equals |x| if α=1. We construct a Newman type operator rn(x) and show max|x|≤1{|x^αsgnx-rn(x)|}-Cn-α/2e-√2nα where C is a constant depending on α.
基金supported by the National Nature Science Foundation of China(No.11571362)Fundamental Research Funds for the Central Universities(No.2652018054).
文摘In the present note,we consider the problem:how many interpolation nodes can be deleted from the Newman-type rational function such that the convergence rate still achieve.
基金supported by the National Natural Science Foundation of China (10872036)the High Technological Research and Development Program of China (2008AA04Z118)the Airspace Natural Science Foundation (2007ZA23007)
文摘In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.
基金Project supported by the National Natural Science Foundation of China (No.10162002) the Key Project of Ministry of Education of China (No.204138)
文摘The gas quenching is a modern, effective processing technology. On the basis of nonlinear surface heat-transfer coefficient obtained by Cheng during the gas quenching, the coupled problem between temperature and phase transformation during gas quenching in high pressure was simulated by means of finite element method. In the numerical calculation, the thermal physical properties were treated as the functions of temperature and the volume fraction of phase constituents. In order to avoid effectual "oscillation" of the numerical solutions under smaller time step, the Norsette rational approximate method was used.
基金supported by Macao FDCT(098/2012/A3)Research Grant of the University of Macao(UL017/08-Y4/MAT/QT01/FST)+1 种基金National Natural Science Funds for Young Scholars(10901166)Sun Yat-sen University Operating Costs of Basic ResearchProjects to Cultivate Young Teachers(11lgpy99)
文摘Appealing to the Clifford analysis and matching pursuits, we study the adaptive decompositions of functions of several variables of finite energy under the dictionaries consisting of shifted Cauchy kernels. This is a realization of matching pursuits among shifted Cauchy kernels in higher-dimensional spaces. It offers a method to process signals in arbitrary dimensions.
基金Supported in part by National and Provincial Natural Science Foundations(under grant numbers 10141001 and 101009)by Ningbo Key Doctoral Funds.
文摘The present paper constructs a set of nodes which can generate a rationalinterpolating function to approximate |x|at the rate of O(1/(nk log n))for any givennatural number κ.More importantly.this construction reveals the fact that the higherdensity the distribution of a set of nodes has to zero (that is the singular point of thefunction |x|!),the better the rational interpolation approximation behaves.This probablyalso provides an idea to construct more valuable sets of nodes in the future.
文摘Approximation to the function |x| plays an important role in approximation theory. This paper studies the approximation to the function xαsgn x, which equals |x| if α = 1. We construct a Newman Type Operator rn(x) and prove max |x|≤1|xαsgn x-rn(x)|~Cn1/4e-π1/2(1/2)αn.
基金supported by the Department of Energy (No.DE-FG02-03ER25587)the Office of Naval Research(No.N00014-01-1-0674)an Alfred P.Sloan Research Fellowship and a startup grant from University of Texas at Austin
文摘Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal real〉 ping, and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic structure calculations.