期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fuzzy Syntactic Congruence and Rational Fuzzy Languages
1
作者 SHU Lan1, PENG Jia-yin21.Dept. of Applied Math., University of Electronic Science and Technology of China, Chengdu 610054, China2.Department of Mathematics, Neijiang Teacher′s College, Sichuan Neijiang 614002, China 《Systems Science and Systems Engineering》 CSCD 2002年第4期393-396,共4页
In this paper the notion of rational fuzzy language is introduced, and a theorem is obtained: a fuzzy subset of Σ* is recognizable if and only if it′s rational. The result connects the rational fuzzy language with f... In this paper the notion of rational fuzzy language is introduced, and a theorem is obtained: a fuzzy subset of Σ* is recognizable if and only if it′s rational. The result connects the rational fuzzy language with fuzzy finite-state automaton language. 展开更多
关键词 fuzzy finite-state automaton fuzzy rational language recognizable
原文传递
The Prime Sequence: Demonstrably Highly Organized While Also Opaque and Incomputable-With Remarks on Riemann’s Hypothesis, Partition, Goldbach’s Conjecture, Euclid on Primes, Euclid’s Fifth Postulate, Wilson’s Theorem along with Lagrange’s Proof of It and Pascal’s Triangle, and Rational Human Intelligence
2
作者 Leo Depuydt 《Advances in Pure Mathematics》 2014年第8期400-466,共67页
The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The ma... The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself. 展开更多
关键词 Absolute Limitations of rational Human Intelligence Analytic Number Theory Aristotle’s Fundamental Axiom of Thought Euclid’s Fifth Postulate Euclid on Numbers Euclid on Primes Euclid’s Proof of the Primes’ Infinitude Euler’s Infinite Prime Product Euler’s Infinite Prime Product Equation Euler’s Product Formula Godel’s Incompleteness Theorem Goldbach’s Conjecture Lagrange’s Proof of Wilson’s Theorem Number Theory Partition Partition Numbers Prime Numbers (Primes) Prime Sequence (Sequence of the Prime Numbers) rational Human Intelligence rational Thought and language Riemann’s Hypothesis Riemann’s Zeta Function Wilson’s Theorem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部