In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches ...In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches zero.展开更多
In recent 30 years, some Chinese scholars have focused their researches on Nord's Function plus Loyalty Theory. And Loyalty Principle has been warmly praised as well as severely criticized by scholars in the field of...In recent 30 years, some Chinese scholars have focused their researches on Nord's Function plus Loyalty Theory. And Loyalty Principle has been warmly praised as well as severely criticized by scholars in the field of translation. In this paper, the author first states the definition, connotation, rationalities and limitations of this principle and introduces the main remarks it has received in western countries. Then, three positive remarks from BIAN Jian-hua, CHEN Xiao-wei and WU Wen-an and three negative ones from ZHU Jian-ping, ZHANG Nan-feng and ZHANG Mei-fang are spread out. Finally, the author respectively brings forth her own different point of view on the three negative remarks from the above three. This paper attempts to reassure the rationalities, practical value and great significance of Nord's Loyalty Principle and encourage people to treat it in an objective way.展开更多
The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The ma...The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself.展开更多
基金This research is suported by National Science foundation Grant.
文摘In this paper, we prove that the best rational approximation of a given analytic function in Orlicz space L~*(G), where G = {|z|≤∈}, converges to the Pade approximants of the function as the measure of G approaches zero.
文摘In recent 30 years, some Chinese scholars have focused their researches on Nord's Function plus Loyalty Theory. And Loyalty Principle has been warmly praised as well as severely criticized by scholars in the field of translation. In this paper, the author first states the definition, connotation, rationalities and limitations of this principle and introduces the main remarks it has received in western countries. Then, three positive remarks from BIAN Jian-hua, CHEN Xiao-wei and WU Wen-an and three negative ones from ZHU Jian-ping, ZHANG Nan-feng and ZHANG Mei-fang are spread out. Finally, the author respectively brings forth her own different point of view on the three negative remarks from the above three. This paper attempts to reassure the rationalities, practical value and great significance of Nord's Loyalty Principle and encourage people to treat it in an objective way.
文摘The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself.