We compute rational points on real hyperelliptic curves of genus 3 defined on <img src="Edit_ff1a2758-8302-45a6-8c7e-a73bd35f12bd.png" width="20" height="18" alt="" /> who...We compute rational points on real hyperelliptic curves of genus 3 defined on <img src="Edit_ff1a2758-8302-45a6-8c7e-a73bd35f12bd.png" width="20" height="18" alt="" /> whose Jacobian have Mordell-Weil rank <em>r=0</em>. We present an implementation in sagemath of an algorithm which describes the birational transformation of real hyperelliptic curves into imaginary hyperelliptic curves and <span>the Chabauty-Coleman method to find <em>C </em>(<img src="Edit_243e29b4-1b26-469a-9e65-461ffac1e473.png" width="20" height="18" alt="" />)<span></span>. We run the algorithms in</span> Sage on 47 real hyperelliptic curves of genus 3.展开更多
Let Fq be the finite field of q elements and f be a nonzero polynomial over Fq. For each b ∈ Fq, let Nq(f = b) denote the number of Fq-rational points on the affine hypersurface f = b. We obtain the formula of Nq(...Let Fq be the finite field of q elements and f be a nonzero polynomial over Fq. For each b ∈ Fq, let Nq(f = b) denote the number of Fq-rational points on the affine hypersurface f = b. We obtain the formula of Nq(f= b) for a class of hypersurfaces over Fq by using the greatest invariant factors of degree matrices under certain cases, which generalizes the previously known results. We also give another simple direct proof to the known results.展开更多
We study the classification of elliptic curves E over the rationals Q according to the torsion subgroups E_(tors)(Q). More precisely, we classify those elliptic curves with E_(tors)(Q) being cyclic with even orders. W...We study the classification of elliptic curves E over the rationals Q according to the torsion subgroups E_(tors)(Q). More precisely, we classify those elliptic curves with E_(tors)(Q) being cyclic with even orders. We also give explicit formulas for generators of E_(tors)(Q). These results, together with the recent results of K. Ono for the non-cyclic E_(tors)(Q), completely solve the problem of the explicit classification and parameterization when E has a rational point of order 2.展开更多
Let E be an elliptic curve defined over the field of rational numbers ~. Let d be a square-free integer and let Ed be the quadratic twist of E determined by d. Mai, Murty and Ono have proved that there are infinitely ...Let E be an elliptic curve defined over the field of rational numbers ~. Let d be a square-free integer and let Ed be the quadratic twist of E determined by d. Mai, Murty and Ono have proved that there are infinitely many square-free integers d such that the rank of Ed(Q) is zero. Let E(k) denote the elliptic curve y2 = x3 + k. Then the quadratic twist E(1)d of E(1) by d is the elliptic curve E(d3): y2 = x3+ k3. Let r = 1, 2, 5, 10, 13, 14, 17, 22. Ono proved that there are infinitely many square-free integers d = r (rood 24) such that rankE(-d3)(Q) = 0, using the theory of modular forms. In this paper, we use the class number of quadratic field and Pell equation to describe these square-free integers k such that E(k3)(Q) has rank zero.展开更多
We classify,up to some lattice-theoretic equivalence,all possible configurations of rational double points that can appear on a surface whose minimal resolution is a complex Enriques surface.
We examine when a meromorphic quadratic differential φ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of φ around each pole ...We examine when a meromorphic quadratic differential φ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of φ around each pole c, the most singular term should take the form(1- d2)/(2(z- c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles(i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko(2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by φ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative.Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball.展开更多
Let Fqbe the finite field,q=p^(k),with p being a prime and k being a positive integer.Let F_(q)^(*)be the multiplicative group of Fq,that is F_(q)^(*)=F_(q){0}.In this paper,by using the Jacobi sums and an analog of H...Let Fqbe the finite field,q=p^(k),with p being a prime and k being a positive integer.Let F_(q)^(*)be the multiplicative group of Fq,that is F_(q)^(*)=F_(q){0}.In this paper,by using the Jacobi sums and an analog of Hasse-Davenport theorem,an explicit formula for the number of solutions of cubic diagonal equation x_(1)^(3)+x_(2)^(3)+…+x_(n)^(3)=c over Fqis given,where c∈F_(q)^(*)and p≡1(mod 3).This extends earlier results.展开更多
This paper establishes an asymptotic formula with a power-saving error term for the number of rational points of bounded height on the singular cubic surface of P3 Qgiven by the following equation x0(x12+ x22)-x33= ...This paper establishes an asymptotic formula with a power-saving error term for the number of rational points of bounded height on the singular cubic surface of P3 Qgiven by the following equation x0(x12+ x22)-x33= 0 in agreement with the Manin-Peyre conjectures.展开更多
We present the complete list of all singularity types on Gorenstein Q-homology projective planes,i.e.,normal projective surfaces of second Betti number one with at worst rational double points.The list consists of 58 ...We present the complete list of all singularity types on Gorenstein Q-homology projective planes,i.e.,normal projective surfaces of second Betti number one with at worst rational double points.The list consists of 58 possible singularity types,each except two types supported by an example.展开更多
Let s be a positive integer,p be an odd prime,q=p^(s),and let F_(q)be a finite field of q elements.Let N_(q)be the number of solutions of the following equations:(x_(1)^(m_(1))+x_(2)^(m_(2))+…+x_(n)^(m_(n)))^(k)=x_(1...Let s be a positive integer,p be an odd prime,q=p^(s),and let F_(q)be a finite field of q elements.Let N_(q)be the number of solutions of the following equations:(x_(1)^(m_(1))+x_(2)^(m_(2))+…+x_(n)^(m_(n)))^(k)=x_(1)x_(2)…x_(n)x^(k_(n+1))_(n+1)…x^(k_(t))_(t)over the finite field F_(q),with n≥2,t>n,k,and k_(j)(n+1≤j≤t),m_(i)(1≤i≤n)are positive integers.In this paper,we find formulas for N_(q)when there is a positive integer l such that dD|(p^(l)+1),where D=1 cm[d_(1),…,d_(n)],d=gcd(n∑i=1M/m_(i)-kM,(q-1)/D),M=1 cm[m_(1),…,m_(n)],d_(j)=gcd(m_(j),q-1),1≤j≤n.And we determine N_(q)explicitly under certain cases.This extends Markoff-Hurwitz-type equations over finite field.展开更多
We fix a counting function of multiplicities of algebraic points in a projective hypersurface over a number field, and take the sum over all algebraic points of bounded height and fixed degree. An upper bound for the ...We fix a counting function of multiplicities of algebraic points in a projective hypersurface over a number field, and take the sum over all algebraic points of bounded height and fixed degree. An upper bound for the sum with respect to this counting function will be given in terms of the degree of the hypersurface, the dimension of the singular locus, the upper bounds of height, and the degree of the field of definition.展开更多
Let P(t) be a product of(possibly repeated) linear factors over Q and K/Q an abelian extension. Under a strict condition, we show that the Brauer-Manin obstruction to the Hasse principle and weak approximation is the ...Let P(t) be a product of(possibly repeated) linear factors over Q and K/Q an abelian extension. Under a strict condition, we show that the Brauer-Manin obstruction to the Hasse principle and weak approximation is the only one for any smooth proper model of the variety over Q defined by P(t) = NK/Q(x).展开更多
Let Fq stand for the finite field of odd characteristic p with q elements(q=pn,n∈N)and Fq* denote the set of all the nonzero elements of Fq.In this paper,by using the augmented degree matrix and the result given b...Let Fq stand for the finite field of odd characteristic p with q elements(q=pn,n∈N)and Fq* denote the set of all the nonzero elements of Fq.In this paper,by using the augmented degree matrix and the result given by Cao,we obtain a formula for the number of rational points of the following equation over Fq:f(x 1,x 2,...,x n)=(a1 x1 x2d+a2 x2 x3d...+a(n-1)x(n-1)xnd+an xn x1d)λ-bx1(d1)x2d2...xn(dn),with ai,b∈Fq*,n≥2,λ〉0 being positive integers,and d,di being nonnegative integers for 1≤i n.This technique can be applied to the polynomials of the form h1λ=h2 with λ being positive integer and h1,h2∈Fq[x 1,x 2,...,x n].It extends the results of the Markoff-Hurwitz-type equations.展开更多
文摘We compute rational points on real hyperelliptic curves of genus 3 defined on <img src="Edit_ff1a2758-8302-45a6-8c7e-a73bd35f12bd.png" width="20" height="18" alt="" /> whose Jacobian have Mordell-Weil rank <em>r=0</em>. We present an implementation in sagemath of an algorithm which describes the birational transformation of real hyperelliptic curves into imaginary hyperelliptic curves and <span>the Chabauty-Coleman method to find <em>C </em>(<img src="Edit_243e29b4-1b26-469a-9e65-461ffac1e473.png" width="20" height="18" alt="" />)<span></span>. We run the algorithms in</span> Sage on 47 real hyperelliptic curves of genus 3.
基金The authors would like to give thanks to the referees for many helpful suggestions. This work was jointly supported by the National Natural Science Foundation of China (11371208), Zhejiang Provincial Natural Science Foundation of China (LY17A010008) and Ningbo Natural Science Foundation (2017A610134), and sponsored by the K. C. Wong Magna Fund in Ningbo University.
文摘Let Fq be the finite field of q elements and f be a nonzero polynomial over Fq. For each b ∈ Fq, let Nq(f = b) denote the number of Fq-rational points on the affine hypersurface f = b. We obtain the formula of Nq(f= b) for a class of hypersurfaces over Fq by using the greatest invariant factors of degree matrices under certain cases, which generalizes the previously known results. We also give another simple direct proof to the known results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19771052)
文摘We study the classification of elliptic curves E over the rationals Q according to the torsion subgroups E_(tors)(Q). More precisely, we classify those elliptic curves with E_(tors)(Q) being cyclic with even orders. We also give explicit formulas for generators of E_(tors)(Q). These results, together with the recent results of K. Ono for the non-cyclic E_(tors)(Q), completely solve the problem of the explicit classification and parameterization when E has a rational point of order 2.
文摘Let E be an elliptic curve defined over the field of rational numbers ~. Let d be a square-free integer and let Ed be the quadratic twist of E determined by d. Mai, Murty and Ono have proved that there are infinitely many square-free integers d such that the rank of Ed(Q) is zero. Let E(k) denote the elliptic curve y2 = x3 + k. Then the quadratic twist E(1)d of E(1) by d is the elliptic curve E(d3): y2 = x3+ k3. Let r = 1, 2, 5, 10, 13, 14, 17, 22. Ono proved that there are infinitely many square-free integers d = r (rood 24) such that rankE(-d3)(Q) = 0, using the theory of modular forms. In this paper, we use the class number of quadratic field and Pell equation to describe these square-free integers k such that E(k3)(Q) has rank zero.
文摘We classify,up to some lattice-theoretic equivalence,all possible configurations of rational double points that can appear on a surface whose minimal resolution is a complex Enriques surface.
基金supported by National Natural Science Foundation of China (Grant Nos. 11125106 and 11501383)Project LAMBDA (Grant No. ANR-13-BS01-0002)
文摘We examine when a meromorphic quadratic differential φ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of φ around each pole c, the most singular term should take the form(1- d2)/(2(z- c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles(i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko(2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by φ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative.Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball.
基金Supported by the Natural Science Foundation of Henan Province(232300420123)the National Natural Science Foundation of China(12026224)the Research Center of Mathematics and Applied Mathematics,Nanyang Institute of Technology。
文摘Let Fqbe the finite field,q=p^(k),with p being a prime and k being a positive integer.Let F_(q)^(*)be the multiplicative group of Fq,that is F_(q)^(*)=F_(q){0}.In this paper,by using the Jacobi sums and an analog of Hasse-Davenport theorem,an explicit formula for the number of solutions of cubic diagonal equation x_(1)^(3)+x_(2)^(3)+…+x_(n)^(3)=c over Fqis given,where c∈F_(q)^(*)and p≡1(mod 3).This extends earlier results.
基金supported by the program PRC 1457-Au For Di P(CNRS-NSFC)supported by National Natural Science Foundation of China(Grant No.11531008)+1 种基金the Ministry of Education of China(Grant No.IRT16R43)the Taishan Scholar Project of Shandong Province
文摘This paper establishes an asymptotic formula with a power-saving error term for the number of rational points of bounded height on the singular cubic surface of P3 Qgiven by the following equation x0(x12+ x22)-x33= 0 in agreement with the Manin-Peyre conjectures.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(Grant No.2011-0022904)the National Research Foundation of Korea,funded by the Ministry of Education,Science and Technology(Grant No.2007-C00002)
文摘We present the complete list of all singularity types on Gorenstein Q-homology projective planes,i.e.,normal projective surfaces of second Betti number one with at worst rational double points.The list consists of 58 possible singularity types,each except two types supported by an example.
基金Supported by the National Natural Science Foundation of China(12026224)
文摘Let s be a positive integer,p be an odd prime,q=p^(s),and let F_(q)be a finite field of q elements.Let N_(q)be the number of solutions of the following equations:(x_(1)^(m_(1))+x_(2)^(m_(2))+…+x_(n)^(m_(n)))^(k)=x_(1)x_(2)…x_(n)x^(k_(n+1))_(n+1)…x^(k_(t))_(t)over the finite field F_(q),with n≥2,t>n,k,and k_(j)(n+1≤j≤t),m_(i)(1≤i≤n)are positive integers.In this paper,we find formulas for N_(q)when there is a positive integer l such that dD|(p^(l)+1),where D=1 cm[d_(1),…,d_(n)],d=gcd(n∑i=1M/m_(i)-kM,(q-1)/D),M=1 cm[m_(1),…,m_(n)],d_(j)=gcd(m_(j),q-1),1≤j≤n.And we determine N_(q)explicitly under certain cases.This extends Markoff-Hurwitz-type equations over finite field.
文摘We fix a counting function of multiplicities of algebraic points in a projective hypersurface over a number field, and take the sum over all algebraic points of bounded height and fixed degree. An upper bound for the sum with respect to this counting function will be given in terms of the degree of the hypersurface, the dimension of the singular locus, the upper bounds of height, and the degree of the field of definition.
文摘Let P(t) be a product of(possibly repeated) linear factors over Q and K/Q an abelian extension. Under a strict condition, we show that the Brauer-Manin obstruction to the Hasse principle and weak approximation is the only one for any smooth proper model of the variety over Q defined by P(t) = NK/Q(x).
基金Supported partially by the Key Program of Universities of Henan Province(17A110010)Science and Technology Department of Henan Province(152300410180,142300410107,182102210379)+1 种基金China Postdoctoral Science Foundation Funded Project(2016M602251)the National Natural Science Foundation of China(11501387,U1504105)
文摘Let Fq stand for the finite field of odd characteristic p with q elements(q=pn,n∈N)and Fq* denote the set of all the nonzero elements of Fq.In this paper,by using the augmented degree matrix and the result given by Cao,we obtain a formula for the number of rational points of the following equation over Fq:f(x 1,x 2,...,x n)=(a1 x1 x2d+a2 x2 x3d...+a(n-1)x(n-1)xnd+an xn x1d)λ-bx1(d1)x2d2...xn(dn),with ai,b∈Fq*,n≥2,λ〉0 being positive integers,and d,di being nonnegative integers for 1≤i n.This technique can be applied to the polynomials of the form h1λ=h2 with λ being positive integer and h1,h2∈Fq[x 1,x 2,...,x n].It extends the results of the Markoff-Hurwitz-type equations.