Under the Flaschka-Newell Lax pair,the Darboux transformation for the Painlevé-Ⅱequation is constructed by the limiting technique.With the aid of the Darboux transformation,the rational solutions are represented...Under the Flaschka-Newell Lax pair,the Darboux transformation for the Painlevé-Ⅱequation is constructed by the limiting technique.With the aid of the Darboux transformation,the rational solutions are represented by the Gram determinant,and then we give the large y asymptotics of the determinant and the rational solutions.Finally,the solution of the corresponding Riemann-Hilbert problem is obtained from the Darboux matrices.展开更多
A chain of novel higher order rational solutions with some parameters and interaction solutions of a(2+1)-dimensional reverse space–time nonlocal Schrodinger(NLS)equation was derived by a generalized Darboux transfor...A chain of novel higher order rational solutions with some parameters and interaction solutions of a(2+1)-dimensional reverse space–time nonlocal Schrodinger(NLS)equation was derived by a generalized Darboux transformation(DT)which is derived by Taylor expansion and determinants.We obtained a series of higher-order rational solutions by one spectral parameter and we could get the periodic wave solution and three kinds of interaction solutions,singular breather and periodic wave interaction solution,singular breather and traveling wave interaction solution,bimodal breather and periodic wave interaction solution by two spectral parameters.We found a general formula for these solutions in the form of determinants.We also analyzed the complex wave structures of the dynamic behaviors and the effects of special parameters and presented exact solutions for the(2+1)-dimensional reverse space–time nonlocal NLS equation.展开更多
In this paper, I construct a generalized Darboux transformation for the nonlocal nonlinear Schrodinger equation with the self-induced parity-time symmetric potential. The N-order rational solution is derived by the it...In this paper, I construct a generalized Darboux transformation for the nonlocal nonlinear Schrodinger equation with the self-induced parity-time symmetric potential. The N-order rational solution is derived by the iterative rule and it can be expressed by the determinant form. In particular, I calculate first-order and second-order rational solutions and obtain their figures according to different parameters.展开更多
In this article, the Riccati Equation is considered. Various techniques of finding analytical solutions are explored. Those techniques consist mainly of making a change of variable or the use of Differential Transform...In this article, the Riccati Equation is considered. Various techniques of finding analytical solutions are explored. Those techniques consist mainly of making a change of variable or the use of Differential Transform. It is shown that the nonconstant rational functions whose numerator and denominator are of degree 1, cannot be solutions to the Riccati equation. Two applications of the Riccati equation are discussed. The first one deals with Quantum Mechanics and the second one deal with Physics.展开更多
We mainly investigate the rational solutions and N-wave resonance solutions for the(3+1)-dimensional Kudryashov–Sinelshchikov equation, which could be used to describe the liquid containing gas bubbles. With appropri...We mainly investigate the rational solutions and N-wave resonance solutions for the(3+1)-dimensional Kudryashov–Sinelshchikov equation, which could be used to describe the liquid containing gas bubbles. With appropriate transformations, two kinds of bilinear forms are derived. Employing the two bilinear equations, dynamical behaviors of nine district solutions for this equation are discussed in detail, including bright rogue wave-type solution, dark rogue wave-type solution, bright W-shaped solution, dark W-shaped rational solution, generalized rational solution and bright-fusion, darkfusion, bright-fission, and dark-fission resonance solutions. In addition, the generalized rational solutions, which depending on two arbitrary parameters, have an interesting structure: splitting from two peaks into three peaks.展开更多
The rational solutions for the discrete Painlevé Ⅱ equation are constructed based on the bilinear formalism. It is shown that they are expressed by a determinant whose entries are given by the Laguerre Polynomials.
Let f(t,y,y')=∑ _(i=0)^(n )a_(i)(t,y)y'^(i)=0 be an irreducible first order ordinary differential equation with polynomial coefficients.Eremenko in 1998 proved that there exists a constant C such that every r...Let f(t,y,y')=∑ _(i=0)^(n )a_(i)(t,y)y'^(i)=0 be an irreducible first order ordinary differential equation with polynomial coefficients.Eremenko in 1998 proved that there exists a constant C such that every rational solution of f(t,y,y')=0 is of degree not greater than C.Examples show that this degree bound C depends not only on the degrees of f in t,y,y' but also on the coefficients of f viewed as the polynomial in t,y,y'.In this paper,the authors show that if f satisfies deg(f,y)<deg(f,y')or n max i=0{deg(a_(i),y)−2(n−i)}>0,then the degree bound C only depends on the degrees of f in t,y,y',and furthermore we present an explicit expression for C in terms of the degrees of f in t,y,y'.展开更多
Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutio...Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.展开更多
Under investigation in this paper is a relativistic Toda lattice system with one perturbation parameterαabbreviated as RTLαsystem by Suris,which may describe the motions of particles in lattices interacting through ...Under investigation in this paper is a relativistic Toda lattice system with one perturbation parameterαabbreviated as RTLαsystem by Suris,which may describe the motions of particles in lattices interacting through an exponential interaction force.First of all,an integrable lattice hierarchy associated with an RTLαsystem is constructed,from which some relevant integrable properties such as Hamiltonian structures,Liouville integrability and conservation laws are investigated.Secondly,the discrete generalized(m,2 N-m)-fold Darboux transformation is constructed to derive multi-soliton solutions,higher-order rational and semirational solutions,and their mixed solutions of an RTLαsystem.The soliton elastic interactions and details of rational solutions are analyzed via the graphics and asymptotic analysis.Finally,soliton dynamical evolutions are investigated via numerical simulations,showing that a small noise has very little effect on the soliton propagation.These results may provide new insight into nonlinear lattice dynamics described by RTLαsystem.展开更多
This paper considers algebraic ordinary differential equations(AODEs)and study their polynomial and rational solutions.The authors first prove a sufficient condition for the existence of a bound on the degree of the p...This paper considers algebraic ordinary differential equations(AODEs)and study their polynomial and rational solutions.The authors first prove a sufficient condition for the existence of a bound on the degree of the possible polynomial solutions to an AODE.An AODE satisfying this condition is called noncritical.Then the authors prove that some common classes of low-order AODEs are noncritical.For rational solutions,the authors determine a class of AODEs,which are called maximally comparable,such that the possible poles of any rational solutions are recognizable from their coefficients.This generalizes the well-known fact that any pole of rational solutions to a linear ODE is contained in the set of zeros of its leading coefficient.Finally,the authors develop an algorithm to compute all rational solutions of certain maximally comparable AODEs,which is applicable to 78.54%of the AODEs in Kamke's collection of standard differential equations.展开更多
Using the relation between the mKdV equation and the KdV-mKdV equation,we derive non-singular rational solutions for the mKdV equation.The solutions are given in terms of Wronskians.Dynamics of some solutions is inves...Using the relation between the mKdV equation and the KdV-mKdV equation,we derive non-singular rational solutions for the mKdV equation.The solutions are given in terms of Wronskians.Dynamics of some solutions is investigated by means of asymptotic analysis.Wave trajectories of high order rational solutions are asymptotically governed by cubic curves.展开更多
The double Wronskian solutions whose entries satisfy matrix equation for a (2+1)-dimensional breaking soliton equation ((2+ 1)DBSE) associated with the ZS-AKNS hierarchy are derived through the Wronskian techn...The double Wronskian solutions whose entries satisfy matrix equation for a (2+1)-dimensional breaking soliton equation ((2+ 1)DBSE) associated with the ZS-AKNS hierarchy are derived through the Wronskian technique. Rational and periodic solutions for (2+1)DBSE are obtained by taking special eases in general double Wronskian solutions.展开更多
In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations....In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases.展开更多
A linear superposition is studied for Wronskian rational solutions to the Kd V equation,which include rogue wave solutions.It is proved that it is equivalent to a polynomial identity that an arbitrary linear combinati...A linear superposition is studied for Wronskian rational solutions to the Kd V equation,which include rogue wave solutions.It is proved that it is equivalent to a polynomial identity that an arbitrary linear combination of two Wronskian polynomial solutions with a difference two between the Wronskian orders is again a solution to the bilinear Kd V equation.It is also conjectured that there is no other rational solutions among general linear superpositions of Wronskian rational solutions.展开更多
With the aid of computerized symbolic computation and Riccati equation rational expansion approach, some new and more general rational formal solutions to (2+1)-dimensional Toda system are obtained. The method used...With the aid of computerized symbolic computation and Riccati equation rational expansion approach, some new and more general rational formal solutions to (2+1)-dimensional Toda system are obtained. The method used here can also be applied to solve other nonlinear differential-difference equation or equations.展开更多
Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed b...Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed by using the Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the co...Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.展开更多
A new method for constructing the Wronskian entries is proposed and applied to the differential-difference Kadomtsev-Petviashvilli (DΔKP) equation. The generalized Wronskian solutions to it are obtained, including ...A new method for constructing the Wronskian entries is proposed and applied to the differential-difference Kadomtsev-Petviashvilli (DΔKP) equation. The generalized Wronskian solutions to it are obtained, including rational solutions and Matveev solutions.展开更多
In this paper,by improving some procedure of extended tanh-function method,some new exact solutions to the integrable Broer-Kaup equations in(2 + 1)-dimensional spaces are obtained,which include soliton-like solutions...In this paper,by improving some procedure of extended tanh-function method,some new exact solutions to the integrable Broer-Kaup equations in(2 + 1)-dimensional spaces are obtained,which include soliton-like solutions,solitary wave solutions,trigonometric function solutions,and rational solutions.展开更多
The new method for constructing the Wronskian entries is applied to the Boussinesq equation. The novel Wronskian solutions to it are obtained, including solitons, rational solutions, Matveev solutions, and complexitons.
基金Project supported by the National Natural Science Foundation of China (Grant No.12101246)。
文摘Under the Flaschka-Newell Lax pair,the Darboux transformation for the Painlevé-Ⅱequation is constructed by the limiting technique.With the aid of the Darboux transformation,the rational solutions are represented by the Gram determinant,and then we give the large y asymptotics of the determinant and the rational solutions.Finally,the solution of the corresponding Riemann-Hilbert problem is obtained from the Darboux matrices.
文摘A chain of novel higher order rational solutions with some parameters and interaction solutions of a(2+1)-dimensional reverse space–time nonlocal Schrodinger(NLS)equation was derived by a generalized Darboux transformation(DT)which is derived by Taylor expansion and determinants.We obtained a series of higher-order rational solutions by one spectral parameter and we could get the periodic wave solution and three kinds of interaction solutions,singular breather and periodic wave interaction solution,singular breather and traveling wave interaction solution,bimodal breather and periodic wave interaction solution by two spectral parameters.We found a general formula for these solutions in the form of determinants.We also analyzed the complex wave structures of the dynamic behaviors and the effects of special parameters and presented exact solutions for the(2+1)-dimensional reverse space–time nonlocal NLS equation.
基金supported by the Shanghai Leading Academic Discipline Project under Grant No.XTKX2012by the Natural Science Foundation of Shanghai under Grant No.12ZR1446800,Science and Technology Commission of Shanghai municipalityby the National Natural Science Foundation of China under Grant Nos.11201302 and11171220.
文摘In this paper, I construct a generalized Darboux transformation for the nonlocal nonlinear Schrodinger equation with the self-induced parity-time symmetric potential. The N-order rational solution is derived by the iterative rule and it can be expressed by the determinant form. In particular, I calculate first-order and second-order rational solutions and obtain their figures according to different parameters.
文摘In this article, the Riccati Equation is considered. Various techniques of finding analytical solutions are explored. Those techniques consist mainly of making a change of variable or the use of Differential Transform. It is shown that the nonconstant rational functions whose numerator and denominator are of degree 1, cannot be solutions to the Riccati equation. Two applications of the Riccati equation are discussed. The first one deals with Quantum Mechanics and the second one deal with Physics.
基金Project supported by the National Natural Science Foundation of China(Grant No.11675054)the Future Scientist/Outstanding Scholar Training Program of East China Normal University(Grant No.WLKXJ2019-004)+1 种基金the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things(Grant No.ZF1213)the Project from the Science and Technology Commission of Shanghai Municipality,China(Grant No.18dz2271000)。
文摘We mainly investigate the rational solutions and N-wave resonance solutions for the(3+1)-dimensional Kudryashov–Sinelshchikov equation, which could be used to describe the liquid containing gas bubbles. With appropriate transformations, two kinds of bilinear forms are derived. Employing the two bilinear equations, dynamical behaviors of nine district solutions for this equation are discussed in detail, including bright rogue wave-type solution, dark rogue wave-type solution, bright W-shaped solution, dark W-shaped rational solution, generalized rational solution and bright-fusion, darkfusion, bright-fission, and dark-fission resonance solutions. In addition, the generalized rational solutions, which depending on two arbitrary parameters, have an interesting structure: splitting from two peaks into three peaks.
文摘The rational solutions for the discrete Painlevé Ⅱ equation are constructed based on the bilinear formalism. It is shown that they are expressed by a determinant whose entries are given by the Laguerre Polynomials.
基金supported by Beijing Natural Science Foundation under Grant No.Z190004the National Key Research and Development Project under Grant No.2020YFA0713703the Fundamental Research Funds for the Central Universities.
文摘Let f(t,y,y')=∑ _(i=0)^(n )a_(i)(t,y)y'^(i)=0 be an irreducible first order ordinary differential equation with polynomial coefficients.Eremenko in 1998 proved that there exists a constant C such that every rational solution of f(t,y,y')=0 is of degree not greater than C.Examples show that this degree bound C depends not only on the degrees of f in t,y,y' but also on the coefficients of f viewed as the polynomial in t,y,y'.In this paper,the authors show that if f satisfies deg(f,y)<deg(f,y')or n max i=0{deg(a_(i),y)−2(n−i)}>0,then the degree bound C only depends on the degrees of f in t,y,y',and furthermore we present an explicit expression for C in terms of the degrees of f in t,y,y'.
基金The project supported by National Natural Science Foundation of China under Grant No.10771196the Natural Science Foundation of Zhejiang Province under Grant No.Y605044
文摘Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.
基金supported by National Natural Science Foundation of China (Grant No. 12 071 042)Beijing Natural Science Foundation (Grant No. 1 202 006)。
文摘Under investigation in this paper is a relativistic Toda lattice system with one perturbation parameterαabbreviated as RTLαsystem by Suris,which may describe the motions of particles in lattices interacting through an exponential interaction force.First of all,an integrable lattice hierarchy associated with an RTLαsystem is constructed,from which some relevant integrable properties such as Hamiltonian structures,Liouville integrability and conservation laws are investigated.Secondly,the discrete generalized(m,2 N-m)-fold Darboux transformation is constructed to derive multi-soliton solutions,higher-order rational and semirational solutions,and their mixed solutions of an RTLαsystem.The soliton elastic interactions and details of rational solutions are analyzed via the graphics and asymptotic analysis.Finally,soliton dynamical evolutions are investigated via numerical simulations,showing that a small noise has very little effect on the soliton propagation.These results may provide new insight into nonlinear lattice dynamics described by RTLαsystem.
基金supported by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under Grant No.101.04-2019.06supported by the Austrian Science Fund(FWF)under Grant No.P29467-N32+1 种基金the UTD startup Fund under Grant No.P-1-03246the Natural Science Foundations of USA under Grant No.CF-1815108 and CCF-1708884。
文摘This paper considers algebraic ordinary differential equations(AODEs)and study their polynomial and rational solutions.The authors first prove a sufficient condition for the existence of a bound on the degree of the possible polynomial solutions to an AODE.An AODE satisfying this condition is called noncritical.Then the authors prove that some common classes of low-order AODEs are noncritical.For rational solutions,the authors determine a class of AODEs,which are called maximally comparable,such that the possible poles of any rational solutions are recognizable from their coefficients.This generalizes the well-known fact that any pole of rational solutions to a linear ODE is contained in the set of zeros of its leading coefficient.Finally,the authors develop an algorithm to compute all rational solutions of certain maximally comparable AODEs,which is applicable to 78.54%of the AODEs in Kamke's collection of standard differential equations.
基金Supported by the National Natural Science Foundation of China under Grant No. 11071157Shanghai Leading Academic Discipline Project under Grant No. J50101
文摘Using the relation between the mKdV equation and the KdV-mKdV equation,we derive non-singular rational solutions for the mKdV equation.The solutions are given in terms of Wronskians.Dynamics of some solutions is investigated by means of asymptotic analysis.Wave trajectories of high order rational solutions are asymptotically governed by cubic curves.
基金Supported by the National Natural Science Foundation of China under Grant No. 10671121
文摘The double Wronskian solutions whose entries satisfy matrix equation for a (2+1)-dimensional breaking soliton equation ((2+ 1)DBSE) associated with the ZS-AKNS hierarchy are derived through the Wronskian technique. Rational and periodic solutions for (2+1)DBSE are obtained by taking special eases in general double Wronskian solutions.
文摘In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases.
基金supported in part by NSFC under the Grant Nos.11975145 and 11972291。
文摘A linear superposition is studied for Wronskian rational solutions to the Kd V equation,which include rogue wave solutions.It is proved that it is equivalent to a polynomial identity that an arbitrary linear combination of two Wronskian polynomial solutions with a difference two between the Wronskian orders is again a solution to the bilinear Kd V equation.It is also conjectured that there is no other rational solutions among general linear superpositions of Wronskian rational solutions.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province.
文摘With the aid of computerized symbolic computation and Riccati equation rational expansion approach, some new and more general rational formal solutions to (2+1)-dimensional Toda system are obtained. The method used here can also be applied to solve other nonlinear differential-difference equation or equations.
文摘Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed by using the Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
基金Project supported by the National Natural Science Foundation of China (Grant No.12071042)Beijing Natural Science Foundation (Grant No.1202006)。
文摘Under consideration in this study is the discrete coupled modified Korteweg-de Vries(mKdV)equation with 4×4 Lax pair.Firstly,through using continuous limit technique,this discrete equation can be mapped to the coupled KdV and mKdV equations,which may depict the development of shallow water waves,the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma.Secondly,the discrete generalized(r,N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem,from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background,higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived,and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique.Finally,the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions.These results may be helpful for understanding some physical phenomena in fields of shallow water wave,optics,and plasma physics.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10371070 and 10671121 .Acknowledgments The authors exPress their thanks to Prof. D.J. Zhang and Dr. J.B. Bi for their good advices.
文摘A new method for constructing the Wronskian entries is proposed and applied to the differential-difference Kadomtsev-Petviashvilli (DΔKP) equation. The generalized Wronskian solutions to it are obtained, including rational solutions and Matveev solutions.
文摘In this paper,by improving some procedure of extended tanh-function method,some new exact solutions to the integrable Broer-Kaup equations in(2 + 1)-dimensional spaces are obtained,which include soliton-like solutions,solitary wave solutions,trigonometric function solutions,and rational solutions.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10371070, 10547123, and 10671121, the Youth Foundation of Shanghai Education Committee, and the Special Funds for Major Specialities of Shanghai Education Committee The authors would like to express their sincere thanks to Dr. D.J. Zhang for his help.
文摘The new method for constructing the Wronskian entries is applied to the Boussinesq equation. The novel Wronskian solutions to it are obtained, including solitons, rational solutions, Matveev solutions, and complexitons.