The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and...The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.展开更多
We revisit the γ-ray emission above 300 Me V towards the massive star-forming region of Orion B by adopting14 yr observations with the Fermi Large Area Telescope and utilizing the updated software tools.The extended ...We revisit the γ-ray emission above 300 Me V towards the massive star-forming region of Orion B by adopting14 yr observations with the Fermi Large Area Telescope and utilizing the updated software tools.The extended γ-ray emission region around Orion B is resolved into two components(region Ⅰ and region Ⅱ).The γ-ray spectrum of region I agrees with the predicted γ-ray spectrum assuming the cosmic ray(CR)density is the same as that of Alpha Magnetic Spectrometer(AMS-02)measured locally.Theγ-ray emissivity of region II appears to be deficit at low energy band(E<3 GeV).Through modeling we find that CR densities exhibit a significant deficit below 20 Ge V,which may be caused by a slow diffusion inside the dense region.This is probably caused by an increased magnetic field whose strength increases with the gas density.展开更多
We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of...We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.展开更多
According to models such as panspermia or the Nebula-Relay hypothesis,the ancestors of life on Earth once lived in molecular clouds.Then what are the energy source and bioenergetics for such lifeforms?A new bioenerget...According to models such as panspermia or the Nebula-Relay hypothesis,the ancestors of life on Earth once lived in molecular clouds.Then what are the energy source and bioenergetics for such lifeforms?A new bioenergetic mechanism powered by cosmic ray ionization of hydrogen molecules is proposed and its relation with the origin of chemiosmosis is also discussed in this paper.Based on this mechanism,the Last Universal Common Ancestor may be a type of lifeform that utilizes hydrogen molecules as donors of electron transport chains.展开更多
The Giant Radio Array for Neutrino Detection(GRAND)is a proposed large-scale observatory designed to detect cosmic rays,gamma-rays,and neutrinos with energies exceeding 100 Pe V.The GRANDProto300 experiment is propose...The Giant Radio Array for Neutrino Detection(GRAND)is a proposed large-scale observatory designed to detect cosmic rays,gamma-rays,and neutrinos with energies exceeding 100 Pe V.The GRANDProto300 experiment is proposed as the early stage of the GRAND project,consisting of a hybrid array of radio antennas and scintillator detectors.The latter,as a mature and traditional detector,is used to cross-check the nature of the candidate events selected from radio observations.In this study,we developed a simulation software called G4GRANDProto300,based on the Geant4 software package,to optimize the spacing of the scintillator detector array and to investigate its effective area.The analysis was conducted at various zenith angles under different detector spacings,including 300,500,600,700,and 900 m.Our results indicate that,for large zenith angles used to search for cosmic-ray in the GRAND project,the optimized effective area is with a detector spacing of 500 m.The G4GRANDProto300 software that we developed could be used to further optimize the layout of the particle detector array in future work.展开更多
An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.I...An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.In the initial phase,a WRP with adjustable resolution and sampling interval based on the object’s size is defined to capture detailed information from large 3D objects.The second phase employs an adaptive angular spectrum method(ASM)to efficiently compute the propagation from the large-sized WRP to the small-sized computer-generated hologram(CGH).The computation process is accelerated using CUDA and OptiX.Optical experiments confirm that the algorithm can generate high-quality holograms with shadow and occlusion effects at a resolution of 1024×1024 in 29 ms.展开更多
Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in ...Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in two cowpea varieties (KVX396-4-5-2D and Moussa local). The radio-sensitivity tests led to determe the lethal dose 50 (LD50) corresponding to 230 Gy and 220 Gy for KVX396-4-5-2D and Moussa local varieties, respectively. Dried seeds (M0) of each variety were gamma-ray irradiated with LD50 − 50, LD50 and LD50 + 50. M1 seeds were advanced to generate M2, M3 and M4 mutants using the single-seed-descent method. M4 mutant lines were evaluated in rain-fed conditions using a randomized complete block design to assess phenotypic differences. Data on seven qualitative and eleven quantitative traits were collected. The results indicated that the mutation induced variability in three qualitative traits: in KVX 396-4-5-2D mutant lines, with flower and seed color frequencies at 2.61% and 0.56% respectively, and pod dehiscence at a frequency of 0.24%. While in Moussa local mutants, a pod color changed at a frequency of 17%. ANOVA results revealed significant differences between mutants of both varieties for all quantitative traits, including photosynthetic parameters. Positive correlations were observed between leaf diameter and 100-seed weight, and between branch number and 100-seed weight. Hierarchical clustering revealed three clusters among KVX 396-4-5-2D mutants and six clusters among Moussa local mutants. Early maturity and high foliage were induced traits in Cluster 3 of KVX 396-4-5-2D mutants while high hundred-seed weight was induced in Cluster 6 of Moussa local mutants.展开更多
Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LU...Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LUS) in resource-rich ICUs is still under investigation. The present study compares the utility of LUS to that of CXR in identifying pulmonary edema and pleural effusion in ICU patients. In addition, consolidation and pneumothorax were analyzed as secondary outcome measures. Material and Methods This is a prospective, single centric, observational study. Patients admitted in ICU were examined for lung pathologies, using LUS by a trained intensivist;and CXR done within 4 hours of each other. The final diagnosis was ascertained by an independent senior radiologist, based on the complete medical chart including clinical findings and the results of thoracic CT, if available. The results were compared and analyzed. Results Sensitivity, specificity and diagnostic accuracy of LUS was 95%, 94.4%, 94.67% for pleural effusion;and 98.33%, 97.78%, 98.00% for pulmonary edema respectively. Corresponding values with CXR were 48.33%, 76.67%, 65.33% for pleural effusion;and 36.67%, 82.22% and 64.00% for pulmonary edema respectively. Sensitivity, specificity and diagnostic accuracy of LUS was 91.30%, 96.85%, 96.00% for consolidation;and 100.00%, 79.02%, 80.00% for pneumothorax respectively. Corresponding values with CXR were 60.87%, 81.10%, 78.00% for consolidation;and 71.3%, 97.20%, 96.00% for pneumothorax respectively. Conclusion LUS has better diagnostic accuracy in diagnosis of pleural effusion and pulmonary edema when compared with CXR and is thus recommended as an effective alternative for diagnosis of these conditions in acute care settings. Our study recommends that a thoracic CT scan can be avoided in most of such cases.展开更多
Ray tracing is a computer graphics method that renders images realistically. As the name suggests, this technique primarily traces the path of light rays interacting with objects in a scene [1], permitting the calcula...Ray tracing is a computer graphics method that renders images realistically. As the name suggests, this technique primarily traces the path of light rays interacting with objects in a scene [1], permitting the calculation of lighting and reflecting impact [2]. As ray tracing is a time-consuming process, the need for parallelization to solve this problem arises. One downside of this solution is the existence of race conditions. In this work, we explore and experiment with a different, well-known solution for this race condition. Starting with the introduction and the background section, a brief overview of the topic is followed by a detailed part of how the race conditions may occur in the case of the ray tracing algorithm. Continuing with the methods and results section, we have used OpenMP to parallelize the Ray tracing algorithm with the different compiler directives critical, atomic, and first-private. Hence, it concluded that both critical and atomic are not efficient solutions to produce a good-quality picture, but first-private succeeded in producing a high-quality picture.展开更多
Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic...Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic rays (CRs) is provided in the framework of the fine tuning of the involved parameters. A theoretical image for the overall diffusion of CRs in galactic coordinates is provided.展开更多
The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken ...The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken as a constant 1500 m/s. However, for deep water exploration, the sound velocity varies with the season, time, location, water depth, ocean currents, and etc.. It also results in a layered velocity distribution, so there is a difference of seismic traveltime, ray paths, and amplitude, which affect the migration imaging results if sea water propagation velocity is still taken as constant for the propagation wavefield. In this paper, we will start from an empirical equation of seismic wave velocity in seawater with changes of temperature, salinity, and depth, consider the variation of their values, build a seawater velocity model, and quantitatively analyze the impact of seawater velocity variation on seismic traveltime, ray paths, and amplitude in the seawater velocity model.展开更多
为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属...为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属性赋值方法对采样点赋值,从而将物体距离视点的距离与物体距离光源的距离有效地结合起来。最后,采用基于空间跳跃的加速技术显示背景体素。实验结果表明:对于512×512×482×2 Byte大小的体数据在减少至原来大小2/3的情况下,在普通微机上能够达到2.5 frame/s的清晰绘制。本算法能够实现一般大小体数据场的实时绘制,而且组织器官显示清晰,符合人的视觉特征。展开更多
[Objective] The aim was to provide reference for research on radiation and breeding of cotton pollen through irradiating common ripe pollen grain of upland cotton by 60Co-γ Ray of varied doses. [Method] Ripe pollen g...[Objective] The aim was to provide reference for research on radiation and breeding of cotton pollen through irradiating common ripe pollen grain of upland cotton by 60Co-γ Ray of varied doses. [Method] Ripe pollen grains of upland cotton were irradiated by 60Co-γ Ray with doses of 5, 10, 15, and 20 Gy, respectively, to learn radiation effect and select appropriate dose. [Result] Most properties of M1 obviously showed variation when dose was over 10 Gy; vitality, growth, and fertility were greatly inhibited when dose was 15 Gy which was almost semi-lethal concentration, and variation species were richest at the same time, which provided materi- als for practical breeding. [Conclusion] 60Co-γ Ray of 15 Gy is more suitable for mutagenesis research on ripe pollen grains of upland cotton.展开更多
An intergeneric artificial hybridization was conducted between Cunninghamia R. Br. and Cryptomeria D.Don The results are as follows:1. A considerable number of hybrid seeds shed from 76 pollinated cones were ...An intergeneric artificial hybridization was conducted between Cunninghamia R. Br. and Cryptomeria D.Don The results are as follows:1. A considerable number of hybrid seeds shed from 76 pollinated cones were empty and a total of 628 looks plump. Soft X ray radiographs showed that, still and all, a majority of the “plump" seeds were embryoless (597, 95.6%) whereas some were partially developed (17,2.7%) and only a few were really full (14, 2.2%). 2. Germination test showed that all of the radiographed hybrid seeds with fully developed embryos were germinable whereas those with partially developed embryos were ungerminable. 3. Physiologically, the growth rate of hypocotyl, the date for shedding of seed coat and spreading of cotyledons, the elongation of epicotyl, and the branching of shoot of the 11 month old seedlings showed a tendency to fall behind those of the female parent; morphologically, the 11 month old hybrid seedlings with linear leaves appeared rather short, slender and weak, whereas the seedlings of the female parents with linear_lanceolate leaves appeared rather tall, stout and strong. 4. It is considered that the hybrid may be true and the crossability reveals a close phylogenetic affinity of Cunninghamia with Cryptomeria.展开更多
Head waves are usually considered to be the refracted waves propagating along flat interfaces with an underlying higher velocity.However,the path that the rays travel along in media with irregular interfaces is not cl...Head waves are usually considered to be the refracted waves propagating along flat interfaces with an underlying higher velocity.However,the path that the rays travel along in media with irregular interfaces is not clear.Here we study the problem by simulation using a new approach of the spectral-element method with some overlapped elements(SEMO) that can accurately evaluate waves traveling along an irregular interface.Consequently,the head waves are separated from interface waves by a time window.Thus,their energy and arrival time changes can be analyzed independently.These analyses demonstrate that,contrary to the case for head waves propagating along a flat interface,there are two mechanisms for head waves traveling along an irregular interface:a refraction mechanism and transmission mechanism.That is,the head waves may be refracted waves propagating along the interface or transmitted waves induced by the waves propagating in the higher-velocity media.Such knowledge will be helpful in constructing a more accurate inversion method,such as head wave travel-time tomography,and in obtaining a more accurate model of subsurface structure which is very important for understanding the formation mechanism of some special areas,such as the Tibetan Plateau.展开更多
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-096)the National Major Scientific Instruments and Equipment Development Project of China(No.11627901)+1 种基金the National Key Research and Development Program of China(Nos.2021YFF0701202,2021YFA1600703)the National Natural Science Foundation of China(Nos.U1932205,12275343).
文摘The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.
基金supported by National Key R&D Program of China(grant No.2023YFE0117200)the National Natural Science Foundation of China(NSFC,grant Nos.12133003,12103011)+2 种基金R-Z.Y.is supported by the NSFC under grants 11421303,12041305Science and Technology Program of Guangxi(grant Nos.AD 21220075 and 2024GXNSFBA010375)the national youth thousand talents program in China。
文摘We revisit the γ-ray emission above 300 Me V towards the massive star-forming region of Orion B by adopting14 yr observations with the Fermi Large Area Telescope and utilizing the updated software tools.The extended γ-ray emission region around Orion B is resolved into two components(region Ⅰ and region Ⅱ).The γ-ray spectrum of region I agrees with the predicted γ-ray spectrum assuming the cosmic ray(CR)density is the same as that of Alpha Magnetic Spectrometer(AMS-02)measured locally.Theγ-ray emissivity of region II appears to be deficit at low energy band(E<3 GeV).Through modeling we find that CR densities exhibit a significant deficit below 20 Ge V,which may be caused by a slow diffusion inside the dense region.This is probably caused by an increased magnetic field whose strength increases with the gas density.
文摘We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.
基金Supported by the National Key Research and Development Program of China(Grant No.2016YFA0400200)the National Natural Science Foundation of China(Grants No.11773075)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2016288).
文摘According to models such as panspermia or the Nebula-Relay hypothesis,the ancestors of life on Earth once lived in molecular clouds.Then what are the energy source and bioenergetics for such lifeforms?A new bioenergetic mechanism powered by cosmic ray ionization of hydrogen molecules is proposed and its relation with the origin of chemiosmosis is also discussed in this paper.Based on this mechanism,the Last Universal Common Ancestor may be a type of lifeform that utilizes hydrogen molecules as donors of electron transport chains.
基金supported by the National Natural Science Foundation of China(Nos.12322302,12275279 and U1931201)the National Key R&D Program of China(No.2023YFE0102300)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No.YSBR-061)the Chinese Academy of Sciencesthe Entrepreneurship and Innovation Program of Jiangsu Province。
文摘The Giant Radio Array for Neutrino Detection(GRAND)is a proposed large-scale observatory designed to detect cosmic rays,gamma-rays,and neutrinos with energies exceeding 100 Pe V.The GRANDProto300 experiment is proposed as the early stage of the GRAND project,consisting of a hybrid array of radio antennas and scintillator detectors.The latter,as a mature and traditional detector,is used to cross-check the nature of the candidate events selected from radio observations.In this study,we developed a simulation software called G4GRANDProto300,based on the Geant4 software package,to optimize the spacing of the scintillator detector array and to investigate its effective area.The analysis was conducted at various zenith angles under different detector spacings,including 300,500,600,700,and 900 m.Our results indicate that,for large zenith angles used to search for cosmic-ray in the GRAND project,the optimized effective area is with a detector spacing of 500 m.The G4GRANDProto300 software that we developed could be used to further optimize the layout of the particle detector array in future work.
基金Project supported by the Special Project of Central Government Guiding Local Science and Technology Development in Beijing 2020(Grant No.Z201100004320006).
文摘An advanced method for rapidly computing holograms of large three-dimensional(3D)objects combines backward ray tracing with adaptive resolution wavefront recording plane(WRP)and adaptive angular spectrum propagation.In the initial phase,a WRP with adjustable resolution and sampling interval based on the object’s size is defined to capture detailed information from large 3D objects.The second phase employs an adaptive angular spectrum method(ASM)to efficiently compute the propagation from the large-sized WRP to the small-sized computer-generated hologram(CGH).The computation process is accelerated using CUDA and OptiX.Optical experiments confirm that the algorithm can generate high-quality holograms with shadow and occlusion effects at a resolution of 1024×1024 in 29 ms.
文摘Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in two cowpea varieties (KVX396-4-5-2D and Moussa local). The radio-sensitivity tests led to determe the lethal dose 50 (LD50) corresponding to 230 Gy and 220 Gy for KVX396-4-5-2D and Moussa local varieties, respectively. Dried seeds (M0) of each variety were gamma-ray irradiated with LD50 − 50, LD50 and LD50 + 50. M1 seeds were advanced to generate M2, M3 and M4 mutants using the single-seed-descent method. M4 mutant lines were evaluated in rain-fed conditions using a randomized complete block design to assess phenotypic differences. Data on seven qualitative and eleven quantitative traits were collected. The results indicated that the mutation induced variability in three qualitative traits: in KVX 396-4-5-2D mutant lines, with flower and seed color frequencies at 2.61% and 0.56% respectively, and pod dehiscence at a frequency of 0.24%. While in Moussa local mutants, a pod color changed at a frequency of 17%. ANOVA results revealed significant differences between mutants of both varieties for all quantitative traits, including photosynthetic parameters. Positive correlations were observed between leaf diameter and 100-seed weight, and between branch number and 100-seed weight. Hierarchical clustering revealed three clusters among KVX 396-4-5-2D mutants and six clusters among Moussa local mutants. Early maturity and high foliage were induced traits in Cluster 3 of KVX 396-4-5-2D mutants while high hundred-seed weight was induced in Cluster 6 of Moussa local mutants.
文摘Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LUS) in resource-rich ICUs is still under investigation. The present study compares the utility of LUS to that of CXR in identifying pulmonary edema and pleural effusion in ICU patients. In addition, consolidation and pneumothorax were analyzed as secondary outcome measures. Material and Methods This is a prospective, single centric, observational study. Patients admitted in ICU were examined for lung pathologies, using LUS by a trained intensivist;and CXR done within 4 hours of each other. The final diagnosis was ascertained by an independent senior radiologist, based on the complete medical chart including clinical findings and the results of thoracic CT, if available. The results were compared and analyzed. Results Sensitivity, specificity and diagnostic accuracy of LUS was 95%, 94.4%, 94.67% for pleural effusion;and 98.33%, 97.78%, 98.00% for pulmonary edema respectively. Corresponding values with CXR were 48.33%, 76.67%, 65.33% for pleural effusion;and 36.67%, 82.22% and 64.00% for pulmonary edema respectively. Sensitivity, specificity and diagnostic accuracy of LUS was 91.30%, 96.85%, 96.00% for consolidation;and 100.00%, 79.02%, 80.00% for pneumothorax respectively. Corresponding values with CXR were 60.87%, 81.10%, 78.00% for consolidation;and 71.3%, 97.20%, 96.00% for pneumothorax respectively. Conclusion LUS has better diagnostic accuracy in diagnosis of pleural effusion and pulmonary edema when compared with CXR and is thus recommended as an effective alternative for diagnosis of these conditions in acute care settings. Our study recommends that a thoracic CT scan can be avoided in most of such cases.
文摘Ray tracing is a computer graphics method that renders images realistically. As the name suggests, this technique primarily traces the path of light rays interacting with objects in a scene [1], permitting the calculation of lighting and reflecting impact [2]. As ray tracing is a time-consuming process, the need for parallelization to solve this problem arises. One downside of this solution is the existence of race conditions. In this work, we explore and experiment with a different, well-known solution for this race condition. Starting with the introduction and the background section, a brief overview of the topic is followed by a detailed part of how the race conditions may occur in the case of the ray tracing algorithm. Continuing with the methods and results section, we have used OpenMP to parallelize the Ray tracing algorithm with the different compiler directives critical, atomic, and first-private. Hence, it concluded that both critical and atomic are not efficient solutions to produce a good-quality picture, but first-private succeeded in producing a high-quality picture.
文摘Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic rays (CRs) is provided in the framework of the fine tuning of the involved parameters. A theoretical image for the overall diffusion of CRs in galactic coordinates is provided.
基金supported by the Major Projects of National Science and Technology Sub-topics(2011ZX05025-001-05)
文摘The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken as a constant 1500 m/s. However, for deep water exploration, the sound velocity varies with the season, time, location, water depth, ocean currents, and etc.. It also results in a layered velocity distribution, so there is a difference of seismic traveltime, ray paths, and amplitude, which affect the migration imaging results if sea water propagation velocity is still taken as constant for the propagation wavefield. In this paper, we will start from an empirical equation of seismic wave velocity in seawater with changes of temperature, salinity, and depth, consider the variation of their values, build a seawater velocity model, and quantitatively analyze the impact of seawater velocity variation on seismic traveltime, ray paths, and amplitude in the seawater velocity model.
文摘为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属性赋值方法对采样点赋值,从而将物体距离视点的距离与物体距离光源的距离有效地结合起来。最后,采用基于空间跳跃的加速技术显示背景体素。实验结果表明:对于512×512×482×2 Byte大小的体数据在减少至原来大小2/3的情况下,在普通微机上能够达到2.5 frame/s的清晰绘制。本算法能够实现一般大小体数据场的实时绘制,而且组织器官显示清晰,符合人的视觉特征。
基金Supported by National Natural Science Foundation of China (10475041)~~
文摘[Objective] The aim was to provide reference for research on radiation and breeding of cotton pollen through irradiating common ripe pollen grain of upland cotton by 60Co-γ Ray of varied doses. [Method] Ripe pollen grains of upland cotton were irradiated by 60Co-γ Ray with doses of 5, 10, 15, and 20 Gy, respectively, to learn radiation effect and select appropriate dose. [Result] Most properties of M1 obviously showed variation when dose was over 10 Gy; vitality, growth, and fertility were greatly inhibited when dose was 15 Gy which was almost semi-lethal concentration, and variation species were richest at the same time, which provided materi- als for practical breeding. [Conclusion] 60Co-γ Ray of 15 Gy is more suitable for mutagenesis research on ripe pollen grains of upland cotton.
文摘An intergeneric artificial hybridization was conducted between Cunninghamia R. Br. and Cryptomeria D.Don The results are as follows:1. A considerable number of hybrid seeds shed from 76 pollinated cones were empty and a total of 628 looks plump. Soft X ray radiographs showed that, still and all, a majority of the “plump" seeds were embryoless (597, 95.6%) whereas some were partially developed (17,2.7%) and only a few were really full (14, 2.2%). 2. Germination test showed that all of the radiographed hybrid seeds with fully developed embryos were germinable whereas those with partially developed embryos were ungerminable. 3. Physiologically, the growth rate of hypocotyl, the date for shedding of seed coat and spreading of cotyledons, the elongation of epicotyl, and the branching of shoot of the 11 month old seedlings showed a tendency to fall behind those of the female parent; morphologically, the 11 month old hybrid seedlings with linear leaves appeared rather short, slender and weak, whereas the seedlings of the female parents with linear_lanceolate leaves appeared rather tall, stout and strong. 4. It is considered that the hybrid may be true and the crossability reveals a close phylogenetic affinity of Cunninghamia with Cryptomeria.
基金supported by the National Natural Science Foundation of China (Grant Nos.40874027,90715020,and 90915012)the Institute of Geophysics of the China Earthquake Administration (Grant No.DQJB07B06)Special Public Welfare Industry (Grant Nos.20070804 and 200808008)
文摘Head waves are usually considered to be the refracted waves propagating along flat interfaces with an underlying higher velocity.However,the path that the rays travel along in media with irregular interfaces is not clear.Here we study the problem by simulation using a new approach of the spectral-element method with some overlapped elements(SEMO) that can accurately evaluate waves traveling along an irregular interface.Consequently,the head waves are separated from interface waves by a time window.Thus,their energy and arrival time changes can be analyzed independently.These analyses demonstrate that,contrary to the case for head waves propagating along a flat interface,there are two mechanisms for head waves traveling along an irregular interface:a refraction mechanism and transmission mechanism.That is,the head waves may be refracted waves propagating along the interface or transmitted waves induced by the waves propagating in the higher-velocity media.Such knowledge will be helpful in constructing a more accurate inversion method,such as head wave travel-time tomography,and in obtaining a more accurate model of subsurface structure which is very important for understanding the formation mechanism of some special areas,such as the Tibetan Plateau.