Ray casting algorithm can obtain a better quality image in volume rendering, however, it exists some problems, such as powerful computing capacity and slow rendering speed. How to improve the re-sampled speed is a key...Ray casting algorithm can obtain a better quality image in volume rendering, however, it exists some problems, such as powerful computing capacity and slow rendering speed. How to improve the re-sampled speed is a key to speed up the ray casting algorithm. An algorithm is introduced to reduce matrix computation by matrix transformation characteristics of re-sampling points in a two coordinate system. The projection of 3-D datasets on image plane is adopted to reduce the number of rays. Utilizing boundary box technique avoids the sampling in empty voxel. By extending the Bresenham algorithm to three dimensions, each re-sampling point is calculated. Experimental results show that a two to three-fold improvement in rendering speed using the optimized algorithm, and the similar image quality to traditional algorithm can be achieved. The optimized algorithm can produce the required quality images, thus reducing the total operations and speeding up the volume rendering.展开更多
Pipelines are an important part of urban infrastructure development.As part of a virtual globe(VG),the high-efficiency and high-quality visualization of 3D large-scale and high-density urban pipelines is of great impo...Pipelines are an important part of urban infrastructure development.As part of a virtual globe(VG),the high-efficiency and high-quality visualization of 3D large-scale and high-density urban pipelines is of great importance.This paper proposes a GPU-based pipeline ray casting method for the visualization of urban-scale pipelines in the framework of a VG.The method involves the initial partitioning of the pipeline data into tiles,based on the relationship between the pipeline layer scale and the discrete global grid system(DGGSs).The pipeline centerline in each tile is then segmented and encoded,and a coarser pipeline bounding volume is subsequently constructed using a geometry shader.Finally,the fine 3D pipeline is rendered using a pixel shader.The results of the experimental implementation of the proposed method show that it satisfies the requirements for the multiscale visualization of pipelines in a VG.Moreover,compared with the traditional polygon-based method,the method facilitates a 20%increase in rendering frame rate for the same pixel level accuracy display effect.It also enables the visualization of the thickness of the 3D pipeline without any obvious effect on the rendering efficiency。展开更多
The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean mo...The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean model and visualizing model results have become some of the most important research topics of ‘Digital Ocean'. In this paper, a spherical ray casting method is developed to improve the traditional ray-casting algorithm and to make efficient use of GPUs. Aiming at the ocean current data, a 3D view-dependent line integral convolution method is used, in which the spatial frequency is adapted according to the distance from a camera. The study is based on a 3D virtual reality and visualization engine, namely the VV-Ocean. Some interactive operations are also provided to highlight the interesting structures and the characteristics of volumetric data. Finally, the marine data gathered in the East China Sea are displayed and analyzed. The results show that the method meets the requirements of real-time and interactive rendering.展开更多
A complete and detail method is described to get digitally reconstructed radiographs (DRRs). Casting rays to traverse CT images, computing CT values of resample points by interpolation, then converting CT value to i...A complete and detail method is described to get digitally reconstructed radiographs (DRRs). Casting rays to traverse CT images, computing CT values of resample points by interpolation, then converting CT value to its attenuation coefficient by using simplified segment function. Finally, DRRs enhancement is made to get the better display of region of interest (ROI), and a new way is adopted to adjust the customization coefficient. The experimental results show that the proposed method is effective in generating the satisfied DRRs.展开更多
Direct isosurface volume rendering is the most prominent modern method for medical data visualization.It is based on finding intersection points between the rays corresponding to pixels on the screen and isosurface. T...Direct isosurface volume rendering is the most prominent modern method for medical data visualization.It is based on finding intersection points between the rays corresponding to pixels on the screen and isosurface. This article describes a two-pass algorithm for accelerating the method on the graphic processing unit(GPU). On the first pass, the intersections with the isosurface are found only for a small number of rays, which is done by rendering into a lower-resolution texture. On the second pass, the obtained information is used to efficiently calculate the intersection points of all the other. The number of rays to use during the first pass is determined by using an adaptive algorithm, which runs on the central processing unit(CPU) in parallel with the second pass of the rendering. The proposed approach allows to significantly speed up isosurface visualization without quality loss. Experiments show acceleration up to 10 times in comparison with a common ray casting method implemented on GPU. To the authors’ knowledge, this is the fastest approach for ray casting which does not require any preprocessing and could be run on common GPUs.展开更多
In this paper,we present a novel ocean visualization framework,which focuses on analyzing multidimensional and spatiotemporal ocean data.GPU-based visualization methods are explored to effectively visualize ocean data...In this paper,we present a novel ocean visualization framework,which focuses on analyzing multidimensional and spatiotemporal ocean data.GPU-based visualization methods are explored to effectively visualize ocean data.An improved ray casting algorithm for heterogeneous multisection ocean volume data is presented.A two-layer spherical shell is taken as the ocean data proxy geometry,which enables oceanographers to obtain a real geographic background based on global terrain.An efficient ray sampling technique including an adaptive sampling technique and a preintegrated transfer function is proposed to achieve high-effectiveness and high-efficiency rendering.Moreover,an interactive transfer function is also designed to analyze the 3D structure of ocean temperature and salinity anomaly phenomena.Based on the framework,an integrated visualization system called i4Ocean is created.The visualization of ocean temperature and salinity anomalies extracted interactively by the transfer function is demonstrated.展开更多
Based on the equation of transfer in transport theory of optical physics,a new volume rendering model, called composed scattering model (CSM), is presented. In calculating the scattering term of the equation, it is de...Based on the equation of transfer in transport theory of optical physics,a new volume rendering model, called composed scattering model (CSM), is presented. In calculating the scattering term of the equation, it is decomposed into volume scattering intensity and surface scattering intensity, and they are composed with the boundary detection operator as the weight function. This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in ekisting models they are regarded as two separate ones. This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI. The resultant images show not only rich details but also clear boundary surfaces. CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.展开更多
文摘Ray casting algorithm can obtain a better quality image in volume rendering, however, it exists some problems, such as powerful computing capacity and slow rendering speed. How to improve the re-sampled speed is a key to speed up the ray casting algorithm. An algorithm is introduced to reduce matrix computation by matrix transformation characteristics of re-sampling points in a two coordinate system. The projection of 3-D datasets on image plane is adopted to reduce the number of rays. Utilizing boundary box technique avoids the sampling in empty voxel. By extending the Bresenham algorithm to three dimensions, each re-sampling point is calculated. Experimental results show that a two to three-fold improvement in rendering speed using the optimized algorithm, and the similar image quality to traditional algorithm can be achieved. The optimized algorithm can produce the required quality images, thus reducing the total operations and speeding up the volume rendering.
文摘Pipelines are an important part of urban infrastructure development.As part of a virtual globe(VG),the high-efficiency and high-quality visualization of 3D large-scale and high-density urban pipelines is of great importance.This paper proposes a GPU-based pipeline ray casting method for the visualization of urban-scale pipelines in the framework of a VG.The method involves the initial partitioning of the pipeline data into tiles,based on the relationship between the pipeline layer scale and the discrete global grid system(DGGSs).The pipeline centerline in each tile is then segmented and encoded,and a coarser pipeline bounding volume is subsequently constructed using a geometry shader.Finally,the fine 3D pipeline is rendered using a pixel shader.The results of the experimental implementation of the proposed method show that it satisfies the requirements for the multiscale visualization of pipelines in a VG.Moreover,compared with the traditional polygon-based method,the method facilitates a 20%increase in rendering frame rate for the same pixel level accuracy display effect.It also enables the visualization of the thickness of the 3D pipeline without any obvious effect on the rendering efficiency。
基金supported by the Natural Science Foundation of China under Project 41076115the Global Change Research Program of China under project 2012CB955603the Public Science and Technology Research Funds of the Ocean under project 201005019
文摘The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean model and visualizing model results have become some of the most important research topics of ‘Digital Ocean'. In this paper, a spherical ray casting method is developed to improve the traditional ray-casting algorithm and to make efficient use of GPUs. Aiming at the ocean current data, a 3D view-dependent line integral convolution method is used, in which the spatial frequency is adapted according to the distance from a camera. The study is based on a 3D virtual reality and visualization engine, namely the VV-Ocean. Some interactive operations are also provided to highlight the interesting structures and the characteristics of volumetric data. Finally, the marine data gathered in the East China Sea are displayed and analyzed. The results show that the method meets the requirements of real-time and interactive rendering.
基金Support by Natural Science Foundation of Yunnan Province (2008 C0013R)
文摘A complete and detail method is described to get digitally reconstructed radiographs (DRRs). Casting rays to traverse CT images, computing CT values of resample points by interpolation, then converting CT value to its attenuation coefficient by using simplified segment function. Finally, DRRs enhancement is made to get the better display of region of interest (ROI), and a new way is adopted to adjust the customization coefficient. The experimental results show that the proposed method is effective in generating the satisfied DRRs.
文摘Direct isosurface volume rendering is the most prominent modern method for medical data visualization.It is based on finding intersection points between the rays corresponding to pixels on the screen and isosurface. This article describes a two-pass algorithm for accelerating the method on the graphic processing unit(GPU). On the first pass, the intersections with the isosurface are found only for a small number of rays, which is done by rendering into a lower-resolution texture. On the second pass, the obtained information is used to efficiently calculate the intersection points of all the other. The number of rays to use during the first pass is determined by using an adaptive algorithm, which runs on the central processing unit(CPU) in parallel with the second pass of the rendering. The proposed approach allows to significantly speed up isosurface visualization without quality loss. Experiments show acceleration up to 10 times in comparison with a common ray casting method implemented on GPU. To the authors’ knowledge, this is the fastest approach for ray casting which does not require any preprocessing and could be run on common GPUs.
基金supported by the National Natural Science Foundation of China[grant number 42030406]the Marine Science&Technology Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)[grant number 2018SDKJ0102]+2 种基金the National Key R&D Program of China[grant number 2016YFC1401008]the ESA-NRSCC Scientific Cooperation Project on Earth Observation Science and Applications:Dragon 5[grant number 58393]the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources[grant number KF-2020-05-085].
文摘In this paper,we present a novel ocean visualization framework,which focuses on analyzing multidimensional and spatiotemporal ocean data.GPU-based visualization methods are explored to effectively visualize ocean data.An improved ray casting algorithm for heterogeneous multisection ocean volume data is presented.A two-layer spherical shell is taken as the ocean data proxy geometry,which enables oceanographers to obtain a real geographic background based on global terrain.An efficient ray sampling technique including an adaptive sampling technique and a preintegrated transfer function is proposed to achieve high-effectiveness and high-efficiency rendering.Moreover,an interactive transfer function is also designed to analyze the 3D structure of ocean temperature and salinity anomaly phenomena.Based on the framework,an integrated visualization system called i4Ocean is created.The visualization of ocean temperature and salinity anomalies extracted interactively by the transfer function is demonstrated.
文摘Based on the equation of transfer in transport theory of optical physics,a new volume rendering model, called composed scattering model (CSM), is presented. In calculating the scattering term of the equation, it is decomposed into volume scattering intensity and surface scattering intensity, and they are composed with the boundary detection operator as the weight function. This proposed model differs from the most current volume rendering models in the aspect that in CSM segmentation and illumination intensity calculation are taken as two coherent parts while in ekisting models they are regarded as two separate ones. This model has been applied to the direct volume rendering of 3D data sets obtained by CT and MRI. The resultant images show not only rich details but also clear boundary surfaces. CSM is demonstrated to be an accurate volume rendering model suitable for CT and MRI data sets.