The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and...The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.展开更多
The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types ...The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.展开更多
The Giant Radio Array for Neutrino Detection(GRAND)is a proposed large-scale observatory designed to detect cosmic rays,gamma-rays,and neutrinos with energies exceeding 100 Pe V.The GRANDProto300 experiment is propose...The Giant Radio Array for Neutrino Detection(GRAND)is a proposed large-scale observatory designed to detect cosmic rays,gamma-rays,and neutrinos with energies exceeding 100 Pe V.The GRANDProto300 experiment is proposed as the early stage of the GRAND project,consisting of a hybrid array of radio antennas and scintillator detectors.The latter,as a mature and traditional detector,is used to cross-check the nature of the candidate events selected from radio observations.In this study,we developed a simulation software called G4GRANDProto300,based on the Geant4 software package,to optimize the spacing of the scintillator detector array and to investigate its effective area.The analysis was conducted at various zenith angles under different detector spacings,including 300,500,600,700,and 900 m.Our results indicate that,for large zenith angles used to search for cosmic-ray in the GRAND project,the optimized effective area is with a detector spacing of 500 m.The G4GRANDProto300 software that we developed could be used to further optimize the layout of the particle detector array in future work.展开更多
Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in ...Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in two cowpea varieties (KVX396-4-5-2D and Moussa local). The radio-sensitivity tests led to determe the lethal dose 50 (LD50) corresponding to 230 Gy and 220 Gy for KVX396-4-5-2D and Moussa local varieties, respectively. Dried seeds (M0) of each variety were gamma-ray irradiated with LD50 − 50, LD50 and LD50 + 50. M1 seeds were advanced to generate M2, M3 and M4 mutants using the single-seed-descent method. M4 mutant lines were evaluated in rain-fed conditions using a randomized complete block design to assess phenotypic differences. Data on seven qualitative and eleven quantitative traits were collected. The results indicated that the mutation induced variability in three qualitative traits: in KVX 396-4-5-2D mutant lines, with flower and seed color frequencies at 2.61% and 0.56% respectively, and pod dehiscence at a frequency of 0.24%. While in Moussa local mutants, a pod color changed at a frequency of 17%. ANOVA results revealed significant differences between mutants of both varieties for all quantitative traits, including photosynthetic parameters. Positive correlations were observed between leaf diameter and 100-seed weight, and between branch number and 100-seed weight. Hierarchical clustering revealed three clusters among KVX 396-4-5-2D mutants and six clusters among Moussa local mutants. Early maturity and high foliage were induced traits in Cluster 3 of KVX 396-4-5-2D mutants while high hundred-seed weight was induced in Cluster 6 of Moussa local mutants.展开更多
We revisit the γ-ray emission above 300 Me V towards the massive star-forming region of Orion B by adopting14 yr observations with the Fermi Large Area Telescope and utilizing the updated software tools.The extended ...We revisit the γ-ray emission above 300 Me V towards the massive star-forming region of Orion B by adopting14 yr observations with the Fermi Large Area Telescope and utilizing the updated software tools.The extended γ-ray emission region around Orion B is resolved into two components(region Ⅰ and region Ⅱ).The γ-ray spectrum of region I agrees with the predicted γ-ray spectrum assuming the cosmic ray(CR)density is the same as that of Alpha Magnetic Spectrometer(AMS-02)measured locally.Theγ-ray emissivity of region II appears to be deficit at low energy band(E<3 GeV).Through modeling we find that CR densities exhibit a significant deficit below 20 Ge V,which may be caused by a slow diffusion inside the dense region.This is probably caused by an increased magnetic field whose strength increases with the gas density.展开更多
Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LU...Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LUS) in resource-rich ICUs is still under investigation. The present study compares the utility of LUS to that of CXR in identifying pulmonary edema and pleural effusion in ICU patients. In addition, consolidation and pneumothorax were analyzed as secondary outcome measures. Material and Methods This is a prospective, single centric, observational study. Patients admitted in ICU were examined for lung pathologies, using LUS by a trained intensivist;and CXR done within 4 hours of each other. The final diagnosis was ascertained by an independent senior radiologist, based on the complete medical chart including clinical findings and the results of thoracic CT, if available. The results were compared and analyzed. Results Sensitivity, specificity and diagnostic accuracy of LUS was 95%, 94.4%, 94.67% for pleural effusion;and 98.33%, 97.78%, 98.00% for pulmonary edema respectively. Corresponding values with CXR were 48.33%, 76.67%, 65.33% for pleural effusion;and 36.67%, 82.22% and 64.00% for pulmonary edema respectively. Sensitivity, specificity and diagnostic accuracy of LUS was 91.30%, 96.85%, 96.00% for consolidation;and 100.00%, 79.02%, 80.00% for pneumothorax respectively. Corresponding values with CXR were 60.87%, 81.10%, 78.00% for consolidation;and 71.3%, 97.20%, 96.00% for pneumothorax respectively. Conclusion LUS has better diagnostic accuracy in diagnosis of pleural effusion and pulmonary edema when compared with CXR and is thus recommended as an effective alternative for diagnosis of these conditions in acute care settings. Our study recommends that a thoracic CT scan can be avoided in most of such cases.展开更多
We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of...We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.展开更多
Ray tracing is a computer graphics method that renders images realistically. As the name suggests, this technique primarily traces the path of light rays interacting with objects in a scene [1], permitting the calcula...Ray tracing is a computer graphics method that renders images realistically. As the name suggests, this technique primarily traces the path of light rays interacting with objects in a scene [1], permitting the calculation of lighting and reflecting impact [2]. As ray tracing is a time-consuming process, the need for parallelization to solve this problem arises. One downside of this solution is the existence of race conditions. In this work, we explore and experiment with a different, well-known solution for this race condition. Starting with the introduction and the background section, a brief overview of the topic is followed by a detailed part of how the race conditions may occur in the case of the ray tracing algorithm. Continuing with the methods and results section, we have used OpenMP to parallelize the Ray tracing algorithm with the different compiler directives critical, atomic, and first-private. Hence, it concluded that both critical and atomic are not efficient solutions to produce a good-quality picture, but first-private succeeded in producing a high-quality picture.展开更多
Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic...Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic rays (CRs) is provided in the framework of the fine tuning of the involved parameters. A theoretical image for the overall diffusion of CRs in galactic coordinates is provided.展开更多
Gamma-ray polarimetry is a new and prospective tool for studying extremely high-energy celestial objects and is of great significance for the field of astrophysics.With the rapid development of microsatellite technolo...Gamma-ray polarimetry is a new and prospective tool for studying extremely high-energy celestial objects and is of great significance for the field of astrophysics.With the rapid development of microsatellite technology,the advantages of space exploration have become increasingly apparent.Therefore,we simulated a soft-gamma-ray polarimeter for a microsatellite based on the Compton scattering principle.We performed detailed Monte Carlo simulations using monoenergetic gamma-ray linear-polarization sources and Crab-like sources in the energy range of 0.1-10 MeV considering the orbital background.The polarimeter exhibited excellent polarization detection performance.The modulation factor was 0.80±0.01,and the polarization angles were accurate within an error of 0.2°at 200 keV for on-axis incidence.For the Crab-like sources for on-axis incidence,the polarization degrees were consistent with the set values within the error tolerance,the modulation factor was 0.76±0.01,and the minimum detectable polarization reached 2.4%at 3σfor an observation time of10^(6) s.Additionally,the polarimeter exhibited recoil electron tracking,imaging,and powerful background suppression in a large field of view(FoV;∼2πsr).The proposed polarimeter meets the requirements of a space soft-gamma-ray polarization detector and has promising research prospects.展开更多
Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilit...Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilities of materials.In this study,a simple Monte Carlo code,EJUSTCO,is developed to cd simulate gamma radiation transport in shielding materials for academic purposes.The code considers the photoelectric effect,Compton(incoherent)scattering,pair production,and photon annihilation as the dominant interaction mechanisms in the gamma radiation shielding problem.Variance reduction techniques,such as the Russian roulette,survival weighting,and exponential transformation,are incorporated into the code to improve computational efficiency.Predicting the exponential transformation parameter typically requires trial and error as well as expertise.Herein,a deep learning neural network is proposed as a viable method for predicting this parameter for the first time.The model achieves an MSE of 0.00076752 and an R-value of 0.99998.The exposure buildup factors and radiation dose rates due to the passage of gamma radiation with different source energies and varying thicknesses of lead,water,iron,concrete,and aluminum in single-,double-,and triple-layer material systems are validated by comparing the results with those of MCNP,ESG,ANS-6.4.3,MCBLD,MONTEREY MARK(M),PENELOPE,and experiments.Average errors of 5.6%,2.75%,and 10%are achieved for the exposure buildup factor in single-,double-,and triple-layer materials,respectively.A significant parameter that is not considered in similar studies is the gamma ray albedo.In the EJUSTCO code,the total number and energy albedos have been computed.The results are compared with those of MCNP,FOTELP,and PENELOPE.In general,the EJUSTCO-developed code can be employed to assess the performance of radiation shielding materials because the validation results are consistent with theoretical,experimental,and literary results.展开更多
Precise measurements of energy spectra of different cosmic ray(CR) species have been obtained in recent years, by particularly the AMS-02 experiment on the International Space Station. It has been shown that apparent ...Precise measurements of energy spectra of different cosmic ray(CR) species have been obtained in recent years, by particularly the AMS-02 experiment on the International Space Station. It has been shown that apparent differences exist in different groups of the primary CRs. However, it is not straightforward to conclude that the source spectra of different particle groups are different since they will experience different propagation processes(e.g., energy losses and fragmentations) either. In this work, we study the injection spectra of different nuclear species using the measurements from Voyager-1 outside the solar system, and ACR-CRIS and AMS-02 on the top of atmosphere, in a physical framework of CR transportation. Two types of injection spectra are assumed, the broken power-law(BPL) form and the non-parametric spline interpolation form. The non-parametric form fits the data better than the BPL form, implying that potential structures beyond the constrained spectral shape of BPL may exist. For different nuclei the injection spectra are overall similar in shape but do show some differences among each other. For the non-parametric spectral form, the helium injection spectrum is the softest at low energies and the hardest at high energies. For both spectral shapes, the low-energy injection spectrum of neon is the hardest among all these species, and the carbon and oxygen spectra have more prominent bumps in 1–10 GV in the R2 d N dRpresentation.Such differences suggest the existence of differences in the sources or acceleration processes of various nuclei of CRs.展开更多
Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing syst...Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing system performance.Ray tracing is an effective method to investigate propagation characteristics in a complex environment,and how to quickly and accurately obtain environmental information needs to be solved.This paper presents dynamic environment reconstruction and ray tracing simulation in railway tunnel environment based on Simultaneous Localization and Mapping(SLAM)algorithm and Poisson reconstruction algorithm.Accurate channel parameters are obtained and analyzed based on ray tracing simulation.Both straight and curved tunnels are considered and investigated,and the results show the channel characteristics in complex railway tunnel environments.展开更多
This study aimed to investigate the relationship between atmospheric conditions and cosmic ray (CR) muons using daily and monthly CR data collected by the KAAU muon detector in Jeddah, Saudi Arabia between 2007 and 20...This study aimed to investigate the relationship between atmospheric conditions and cosmic ray (CR) muons using daily and monthly CR data collected by the KAAU muon detector in Jeddah, Saudi Arabia between 2007 and 2012. Specifically, the study examined the effects of atmospheric pressure, air temperature, and relative humidity on CR muons at different time scales (annual, seasonal, and monthly). The results of the analysis revealed that atmospheric pressure and air temperature had a negative impact on CR muons, while relative humidity had a positive impact. Although air temperature and relative humidity had small mean values across all time scales, their coefficients varied significantly from month to month and season to season. In addition, the study conducted multivariable correlation analyses for each day, which showed that pressure coefficients had consistently negative mean values, while the temperature and humidity coefficients had varying effects, ranging from positive to negative values. The reasons for the variations in the coefficients are not yet fully understood, but the study proposed several possible terrestrial and extraterrestrial explanations. These findings provide important insights into the complex interactions between the Earth’s atmosphere and cosmic rays, which can contribute to a better understanding of the potential impacts of cosmic rays on the Earth’s climate and environment.展开更多
The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken ...The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken as a constant 1500 m/s. However, for deep water exploration, the sound velocity varies with the season, time, location, water depth, ocean currents, and etc.. It also results in a layered velocity distribution, so there is a difference of seismic traveltime, ray paths, and amplitude, which affect the migration imaging results if sea water propagation velocity is still taken as constant for the propagation wavefield. In this paper, we will start from an empirical equation of seismic wave velocity in seawater with changes of temperature, salinity, and depth, consider the variation of their values, build a seawater velocity model, and quantitatively analyze the impact of seawater velocity variation on seismic traveltime, ray paths, and amplitude in the seawater velocity model.展开更多
为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属...为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属性赋值方法对采样点赋值,从而将物体距离视点的距离与物体距离光源的距离有效地结合起来。最后,采用基于空间跳跃的加速技术显示背景体素。实验结果表明:对于512×512×482×2 Byte大小的体数据在减少至原来大小2/3的情况下,在普通微机上能够达到2.5 frame/s的清晰绘制。本算法能够实现一般大小体数据场的实时绘制,而且组织器官显示清晰,符合人的视觉特征。展开更多
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-096)the National Major Scientific Instruments and Equipment Development Project of China(No.11627901)+1 种基金the National Key Research and Development Program of China(Nos.2021YFF0701202,2021YFA1600703)the National Natural Science Foundation of China(Nos.U1932205,12275343).
文摘The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.
基金supported by the Youth Talent Program of China National Nuclear Corporationthe Continuous-Support Basic Scientific Research Project(BJ010261223282)+1 种基金the National Natural Science Foundation of China(No.11790321)the Research and development project of China National Nuclear Corporation。
文摘The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.
基金supported by the National Natural Science Foundation of China(Nos.12322302,12275279 and U1931201)the National Key R&D Program of China(No.2023YFE0102300)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No.YSBR-061)the Chinese Academy of Sciencesthe Entrepreneurship and Innovation Program of Jiangsu Province。
文摘The Giant Radio Array for Neutrino Detection(GRAND)is a proposed large-scale observatory designed to detect cosmic rays,gamma-rays,and neutrinos with energies exceeding 100 Pe V.The GRANDProto300 experiment is proposed as the early stage of the GRAND project,consisting of a hybrid array of radio antennas and scintillator detectors.The latter,as a mature and traditional detector,is used to cross-check the nature of the candidate events selected from radio observations.In this study,we developed a simulation software called G4GRANDProto300,based on the Geant4 software package,to optimize the spacing of the scintillator detector array and to investigate its effective area.The analysis was conducted at various zenith angles under different detector spacings,including 300,500,600,700,and 900 m.Our results indicate that,for large zenith angles used to search for cosmic-ray in the GRAND project,the optimized effective area is with a detector spacing of 500 m.The G4GRANDProto300 software that we developed could be used to further optimize the layout of the particle detector array in future work.
文摘Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in two cowpea varieties (KVX396-4-5-2D and Moussa local). The radio-sensitivity tests led to determe the lethal dose 50 (LD50) corresponding to 230 Gy and 220 Gy for KVX396-4-5-2D and Moussa local varieties, respectively. Dried seeds (M0) of each variety were gamma-ray irradiated with LD50 − 50, LD50 and LD50 + 50. M1 seeds were advanced to generate M2, M3 and M4 mutants using the single-seed-descent method. M4 mutant lines were evaluated in rain-fed conditions using a randomized complete block design to assess phenotypic differences. Data on seven qualitative and eleven quantitative traits were collected. The results indicated that the mutation induced variability in three qualitative traits: in KVX 396-4-5-2D mutant lines, with flower and seed color frequencies at 2.61% and 0.56% respectively, and pod dehiscence at a frequency of 0.24%. While in Moussa local mutants, a pod color changed at a frequency of 17%. ANOVA results revealed significant differences between mutants of both varieties for all quantitative traits, including photosynthetic parameters. Positive correlations were observed between leaf diameter and 100-seed weight, and between branch number and 100-seed weight. Hierarchical clustering revealed three clusters among KVX 396-4-5-2D mutants and six clusters among Moussa local mutants. Early maturity and high foliage were induced traits in Cluster 3 of KVX 396-4-5-2D mutants while high hundred-seed weight was induced in Cluster 6 of Moussa local mutants.
基金supported by National Key R&D Program of China(grant No.2023YFE0117200)the National Natural Science Foundation of China(NSFC,grant Nos.12133003,12103011)+2 种基金R-Z.Y.is supported by the NSFC under grants 11421303,12041305Science and Technology Program of Guangxi(grant Nos.AD 21220075 and 2024GXNSFBA010375)the national youth thousand talents program in China。
文摘We revisit the γ-ray emission above 300 Me V towards the massive star-forming region of Orion B by adopting14 yr observations with the Fermi Large Area Telescope and utilizing the updated software tools.The extended γ-ray emission region around Orion B is resolved into two components(region Ⅰ and region Ⅱ).The γ-ray spectrum of region I agrees with the predicted γ-ray spectrum assuming the cosmic ray(CR)density is the same as that of Alpha Magnetic Spectrometer(AMS-02)measured locally.Theγ-ray emissivity of region II appears to be deficit at low energy band(E<3 GeV).Through modeling we find that CR densities exhibit a significant deficit below 20 Ge V,which may be caused by a slow diffusion inside the dense region.This is probably caused by an increased magnetic field whose strength increases with the gas density.
文摘Background and Aims While chest X-ray (CXR) has been a conventional tool in intensive care units (ICUs) to identify lung pathologies, computed tomography (CT) scan remains the gold standard. Use of lung ultrasound (LUS) in resource-rich ICUs is still under investigation. The present study compares the utility of LUS to that of CXR in identifying pulmonary edema and pleural effusion in ICU patients. In addition, consolidation and pneumothorax were analyzed as secondary outcome measures. Material and Methods This is a prospective, single centric, observational study. Patients admitted in ICU were examined for lung pathologies, using LUS by a trained intensivist;and CXR done within 4 hours of each other. The final diagnosis was ascertained by an independent senior radiologist, based on the complete medical chart including clinical findings and the results of thoracic CT, if available. The results were compared and analyzed. Results Sensitivity, specificity and diagnostic accuracy of LUS was 95%, 94.4%, 94.67% for pleural effusion;and 98.33%, 97.78%, 98.00% for pulmonary edema respectively. Corresponding values with CXR were 48.33%, 76.67%, 65.33% for pleural effusion;and 36.67%, 82.22% and 64.00% for pulmonary edema respectively. Sensitivity, specificity and diagnostic accuracy of LUS was 91.30%, 96.85%, 96.00% for consolidation;and 100.00%, 79.02%, 80.00% for pneumothorax respectively. Corresponding values with CXR were 60.87%, 81.10%, 78.00% for consolidation;and 71.3%, 97.20%, 96.00% for pneumothorax respectively. Conclusion LUS has better diagnostic accuracy in diagnosis of pleural effusion and pulmonary edema when compared with CXR and is thus recommended as an effective alternative for diagnosis of these conditions in acute care settings. Our study recommends that a thoracic CT scan can be avoided in most of such cases.
文摘We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.
文摘Ray tracing is a computer graphics method that renders images realistically. As the name suggests, this technique primarily traces the path of light rays interacting with objects in a scene [1], permitting the calculation of lighting and reflecting impact [2]. As ray tracing is a time-consuming process, the need for parallelization to solve this problem arises. One downside of this solution is the existence of race conditions. In this work, we explore and experiment with a different, well-known solution for this race condition. Starting with the introduction and the background section, a brief overview of the topic is followed by a detailed part of how the race conditions may occur in the case of the ray tracing algorithm. Continuing with the methods and results section, we have used OpenMP to parallelize the Ray tracing algorithm with the different compiler directives critical, atomic, and first-private. Hence, it concluded that both critical and atomic are not efficient solutions to produce a good-quality picture, but first-private succeeded in producing a high-quality picture.
文摘Two new solutions of the homogeneous diffusion equation in 1D are derived in the presence of losses and a trigonometric profile for a profile of density. A simulation for the ankle in the energy distribution of cosmic rays (CRs) is provided in the framework of the fine tuning of the involved parameters. A theoretical image for the overall diffusion of CRs in galactic coordinates is provided.
基金This work was supported by the National Natural Science Foundation of China(Nos.U2031206,12273086,12133007)the CAS Key Technology Talent Program。
文摘Gamma-ray polarimetry is a new and prospective tool for studying extremely high-energy celestial objects and is of great significance for the field of astrophysics.With the rapid development of microsatellite technology,the advantages of space exploration have become increasingly apparent.Therefore,we simulated a soft-gamma-ray polarimeter for a microsatellite based on the Compton scattering principle.We performed detailed Monte Carlo simulations using monoenergetic gamma-ray linear-polarization sources and Crab-like sources in the energy range of 0.1-10 MeV considering the orbital background.The polarimeter exhibited excellent polarization detection performance.The modulation factor was 0.80±0.01,and the polarization angles were accurate within an error of 0.2°at 200 keV for on-axis incidence.For the Crab-like sources for on-axis incidence,the polarization degrees were consistent with the set values within the error tolerance,the modulation factor was 0.76±0.01,and the minimum detectable polarization reached 2.4%at 3σfor an observation time of10^(6) s.Additionally,the polarimeter exhibited recoil electron tracking,imaging,and powerful background suppression in a large field of view(FoV;∼2πsr).The proposed polarimeter meets the requirements of a space soft-gamma-ray polarization detector and has promising research prospects.
基金Our profound gratitude and appreciation go to the Egyptian and Japanese governments for supporting and financing this research work at the Egypt-Japan University of Science and TechnologyFurther appreciation goes to the Science and Technology Development Fund for the additional financial support(project ID:STDF-33397).
文摘Gamma ray shielding is essential to ensure the safety of personnel and equipment in facilities and environments where radiation exists.The Monte Carlo technique is vital for analyzing the gamma-ray shielding capabilities of materials.In this study,a simple Monte Carlo code,EJUSTCO,is developed to cd simulate gamma radiation transport in shielding materials for academic purposes.The code considers the photoelectric effect,Compton(incoherent)scattering,pair production,and photon annihilation as the dominant interaction mechanisms in the gamma radiation shielding problem.Variance reduction techniques,such as the Russian roulette,survival weighting,and exponential transformation,are incorporated into the code to improve computational efficiency.Predicting the exponential transformation parameter typically requires trial and error as well as expertise.Herein,a deep learning neural network is proposed as a viable method for predicting this parameter for the first time.The model achieves an MSE of 0.00076752 and an R-value of 0.99998.The exposure buildup factors and radiation dose rates due to the passage of gamma radiation with different source energies and varying thicknesses of lead,water,iron,concrete,and aluminum in single-,double-,and triple-layer material systems are validated by comparing the results with those of MCNP,ESG,ANS-6.4.3,MCBLD,MONTEREY MARK(M),PENELOPE,and experiments.Average errors of 5.6%,2.75%,and 10%are achieved for the exposure buildup factor in single-,double-,and triple-layer materials,respectively.A significant parameter that is not considered in similar studies is the gamma ray albedo.In the EJUSTCO code,the total number and energy albedos have been computed.The results are compared with those of MCNP,FOTELP,and PENELOPE.In general,the EJUSTCO-developed code can be employed to assess the performance of radiation shielding materials because the validation results are consistent with theoretical,experimental,and literary results.
基金supported by the National Key Research and Development Program of China(No. 2021YFA0718404)the National Natural Science Foundation of China (No. 12220101003)the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No. YSBR-061)。
文摘Precise measurements of energy spectra of different cosmic ray(CR) species have been obtained in recent years, by particularly the AMS-02 experiment on the International Space Station. It has been shown that apparent differences exist in different groups of the primary CRs. However, it is not straightforward to conclude that the source spectra of different particle groups are different since they will experience different propagation processes(e.g., energy losses and fragmentations) either. In this work, we study the injection spectra of different nuclear species using the measurements from Voyager-1 outside the solar system, and ACR-CRIS and AMS-02 on the top of atmosphere, in a physical framework of CR transportation. Two types of injection spectra are assumed, the broken power-law(BPL) form and the non-parametric spline interpolation form. The non-parametric form fits the data better than the BPL form, implying that potential structures beyond the constrained spectral shape of BPL may exist. For different nuclei the injection spectra are overall similar in shape but do show some differences among each other. For the non-parametric spectral form, the helium injection spectrum is the softest at low energies and the hardest at high energies. For both spectral shapes, the low-energy injection spectrum of neon is the hardest among all these species, and the carbon and oxygen spectra have more prominent bumps in 1–10 GV in the R2 d N dRpresentation.Such differences suggest the existence of differences in the sources or acceleration processes of various nuclei of CRs.
基金supported by the National Natural Science Foundation of China(62001519)the State Key Laboratory of Advanced Rail Autonomous Operation(RCS2022ZZ004).
文摘Radio propagation environment plays a critical role in the performance of wireless communication systems,and understanding channel characteristics is vital for ensuring reliable communication links and optimizing system performance.Ray tracing is an effective method to investigate propagation characteristics in a complex environment,and how to quickly and accurately obtain environmental information needs to be solved.This paper presents dynamic environment reconstruction and ray tracing simulation in railway tunnel environment based on Simultaneous Localization and Mapping(SLAM)algorithm and Poisson reconstruction algorithm.Accurate channel parameters are obtained and analyzed based on ray tracing simulation.Both straight and curved tunnels are considered and investigated,and the results show the channel characteristics in complex railway tunnel environments.
文摘This study aimed to investigate the relationship between atmospheric conditions and cosmic ray (CR) muons using daily and monthly CR data collected by the KAAU muon detector in Jeddah, Saudi Arabia between 2007 and 2012. Specifically, the study examined the effects of atmospheric pressure, air temperature, and relative humidity on CR muons at different time scales (annual, seasonal, and monthly). The results of the analysis revealed that atmospheric pressure and air temperature had a negative impact on CR muons, while relative humidity had a positive impact. Although air temperature and relative humidity had small mean values across all time scales, their coefficients varied significantly from month to month and season to season. In addition, the study conducted multivariable correlation analyses for each day, which showed that pressure coefficients had consistently negative mean values, while the temperature and humidity coefficients had varying effects, ranging from positive to negative values. The reasons for the variations in the coefficients are not yet fully understood, but the study proposed several possible terrestrial and extraterrestrial explanations. These findings provide important insights into the complex interactions between the Earth’s atmosphere and cosmic rays, which can contribute to a better understanding of the potential impacts of cosmic rays on the Earth’s climate and environment.
基金supported by the Major Projects of National Science and Technology Sub-topics(2011ZX05025-001-05)
文摘The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken as a constant 1500 m/s. However, for deep water exploration, the sound velocity varies with the season, time, location, water depth, ocean currents, and etc.. It also results in a layered velocity distribution, so there is a difference of seismic traveltime, ray paths, and amplitude, which affect the migration imaging results if sea water propagation velocity is still taken as constant for the propagation wavefield. In this paper, we will start from an empirical equation of seismic wave velocity in seawater with changes of temperature, salinity, and depth, consider the variation of their values, build a seawater velocity model, and quantitatively analyze the impact of seawater velocity variation on seismic traveltime, ray paths, and amplitude in the seawater velocity model.
文摘为了在普通微机上实现对医学体数据场的实时清晰绘制,给出了一种多种因素融合的光学属性赋值方法,进而提出一种新的医学体绘制算法。将医学体数据场进行分类,对于前景体素集采用LOD(Layer of Detail)技术进行重采样;然后用定义的光学属性赋值方法对采样点赋值,从而将物体距离视点的距离与物体距离光源的距离有效地结合起来。最后,采用基于空间跳跃的加速技术显示背景体素。实验结果表明:对于512×512×482×2 Byte大小的体数据在减少至原来大小2/3的情况下,在普通微机上能够达到2.5 frame/s的清晰绘制。本算法能够实现一般大小体数据场的实时绘制,而且组织器官显示清晰,符合人的视觉特征。