In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,...In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.展开更多
基金Funded by Natural Science Foundation of Inner Mongolia,China (No. 2019MS05033)。
文摘In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.
文摘三维超快成像是超声技术发展的重要方向.基于二维全采样阵列的传统三维成像方法需要较多成像阵元和采样通道,其紧密的阵元排列设计也客观上限制了阵列孔径大小和成像分辨率.行列寻址(row-column addressing,RCA)探头以行列检索的方式将通道数自N×N减少为N+N,从而极大地降低了阵列的硬件实现成本.本文仿真了中心频率为6MHz的128行+128列的RCA阵列,结合多角度平面波正交复合成像方法,通过延时叠加(delay and sum,DAS)波束合成、基于特征值分解(singular value decomposition,SVD)的杂波滤除和自相关多普勒速度求解算法,实现了血流仿体的多普勒成像,并分析了不同复合角度序列对成像效果的影响.定量分析表明,当角度数从5个增至33个时,-6 dB分辨率从0.986 mm提升至0.493 mm;当复合角度为17个时,功率多普勒图像的SNR可达30 dB,彩色多普勒沿直径方向的速度分布和真实值的平均误差约为26.0%.以上结果表明,基于RCA阵列的三维成像技术能够获得三维B-mode、功率多普勒和彩色多普勒图像,增大复合平面波角度数和角度范围可显著提高成像质量.本研究对于三维超快超声多普勒成像技术发展具有借鉴意义,相关方法有应用于血流血管成像,并进一步实现基于神经-血管耦合的组织功能监测与成像的潜力和前景.