Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is propose...Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is proposed. Using a trial-and-error procedure to minimize errors, the coefficients were determined and a formula was developed for predicting the settling velocity of natural sediment particles. This formula has higher prediction accuracy than other published formulas and it is applicable to all Reynolds numbers less than 2× 10^5.展开更多
Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculat...Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculation and settling of whole-tailings, is particularly necessary to study. However, there exist many problems in observing the flocculation and settling process of whole-tailings, as well as the particle size distribution(PSD) of whole-tailings floccules in deep-cone thickener. Population balance model(PBM) is applied to predict the PSD in deep-cone thickener, and LUO model and GHADIRI model are employed to study the aggregation and fragmentation mechanism of the whole-tailings particles, respectively. Through three-dimensional numerical simulation on the whole-tailings flocculation and settling in deep-cone thickener using computational fluid dynamics(CFD)-PBM, the distribution of density and turbulent kinetic energy in deep-cone thickener were obtained, at the same time the spatio-temporal changes of whole-tailings floccules particle size distribution are analyzed. Finally, the major flocculation position in deep-cone thickener is found and the flocculation settling rules of whole-tailings are achieved.展开更多
Hole cleaning is a complex process as there are many variables affecting cuttings removal(e.g.drilling fluid type,density,flow rate and rheological properties,cuttings size,drill pipe rotation speed).With the increasi...Hole cleaning is a complex process as there are many variables affecting cuttings removal(e.g.drilling fluid type,density,flow rate and rheological properties,cuttings size,drill pipe rotation speed).With the increasing number of drilling small diameter wells(e.g.coiled tubing drilling applications,ultra-deep wells drilled for exploitations of unconventional oil and gas resources),the wall resistance of the micro annulus also emerges as one of the most critical factors affecting the cuttings accumulation in wellbore.The eccentricity of drill pipes commonly observed during the drilling process of ultra-deep well and coiled tubing well makes the wall resistance effect on the cuttings transport even more prominent.Understanding the wall resistance effect on the particle settling behavior in eccentric annuli is,therefore,crucial for hydraulic design of efficient cuttings transport operations in these wells.In this study,a total of 196 sets of particle settling experiments were carried out to investigate the particle settling behavior in eccentric annuli filled with power-law fluids.The test matrix included the eccentricity ranges of 0-0.80,the dimensionless diameter ranges of 0.13-0.75 and the particle Reynolds number ranges of 0.09-32.34.A high-speed camera was used to record the particle settling process and determine the influences of the eccentricity,the dimensionless diameter,the fluid rheological properties,and the solid particle characteristics on the wall factor and the particle settling velocity.The functional relationship among the dimensionless diameter,the particle Reynolds number,and the wall factor was determined by using the method of controlling variables.An eccentric annulus wall factor model with average relative error of 5.16%was established.Moreover,by introducing Archimedes number,an explicit model of particle settling velocity in the eccentric annulus with average relative error of 10.17%was established.A sample calculation of particle settling velocity was provided to show the application of the explicit model.Results of this study can be used as a guideline by field engineers to improve hydraulic design of cuttings transport operations in concentric and eccentric annuli.展开更多
In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The ...In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The results show that the main resistance forces as the tracing particles settled in an air-solid MSFB were motion resistance force and yield force.The motion resistance and yield forces greatly hindered the free settling of the particles by greatly decreasing the acceleration for settling process of the particles.The acceleration decreased from 3022.62 cm/s 2 to zero in 0.1 s,and in the end,the particles stopped in the air-solid MSFB.The yield force on particles increased with increasing the magnetic field intensity,resulting in decrease of the quasi-zero settling displacement.However,the yield force on particles decreased with increasing the fluidized air velocity,leading to increase of the quasi-zero settling displacement.When the structure and operating parameters of the air-solid MSFB were set up,the yield stress on particles stopped in an air-solid MSFB was a function of diameter and density of particles.The settling displacements of equal diameter particles increased with increasing their densities,and the settling displacements of equal density particles increased with increasing their diameters.展开更多
Settling characteristics of floes, including relative settling velocity, relative flocculation coefficient and flocculation exponent, are obtained by the suspended load equations for different size fractions. Data of ...Settling characteristics of floes, including relative settling velocity, relative flocculation coefficient and flocculation exponent, are obtained by the suspended load equations for different size fractions. Data of the Changjiang Estuary suggest that level of flocculation changes from river section, river mouth (turbidity maximum) to offshore area in sequence of low, very high and high. The settling characteristics of floes reflected by in situ estimation performs a similar feature as that obtained from still water experiment.展开更多
Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment ...Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.展开更多
Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular...Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular media as a whole. This paper presents a coupled computational fluid dynamics and discrete element method (CFD-DEM) approach for this purpose. The granular particle system is modeled by DEM, while the fluid flow is simulated by solving the locally averaged Navier-Stokes equation with CFD. The coupling is considered by exchanging such interaction forces as drag force and buoyancy force between the DEM and CFD. The approach is benchmarked by two classic geomechanics problems for which analytical solutions are available, and is further applied to the prediction of sand heap formation in water through hopper flow. It is demonstrated that the key characteristic of granular materials interacting with pore water can be successfully captured by the proposed method.展开更多
砂土液化是常见的地震灾害,目前应用于研究砂土液化动力特性的室内试验以及模型试验还不能全面反映土体液化全过程。计算流体动力学(computational fluid dynamics,CFD)与离散元法(discrete element method,DEM)耦合模拟方法能够准确地...砂土液化是常见的地震灾害,目前应用于研究砂土液化动力特性的室内试验以及模型试验还不能全面反映土体液化全过程。计算流体动力学(computational fluid dynamics,CFD)与离散元法(discrete element method,DEM)耦合模拟方法能够准确地模拟各类水土耦合问题。通过二次开发的CFD-DEM流固耦合模块实现离散元软件PFC3D与计算流体力学软件OpenFOAM之间的力学信息交互,利用颗粒水下自由沉降验证该方法的可行性。利用PFC3D软件模拟室内循环三轴试验标定出具有真实饱和砂土动力特性的数值砂样。根据已有的参数信息以及耦合模拟方法建立了饱和砂土的场地液化模型。模拟结果表明,离散元法能够复现室内砂土液化试验,标定参数可应用于场地液化模拟;单颗粒沉降速度与理论解一致验证了CFD-DEM耦合方法的准确性;峰值加速度0.25g下不同深度处土体均会发生液化,液化时超孔压比无法达到1,超孔压累计值由浅层往深层递增;液化后土体强度自下而上逐渐恢复,再固结的场地土体结构呈现均匀化发展趋势。展开更多
Solid-particle settling occurs in many natural and industrial processes, such as in the transportation of drilling cuttings and fracturing proppant. Knowledge of the drag coefficient and settling velocity of cuttings ...Solid-particle settling occurs in many natural and industrial processes, such as in the transportation of drilling cuttings and fracturing proppant. Knowledge of the drag coefficient and settling velocity of cuttings and proppant is of significance to hydraulics design, wellbore cleanout, and fracture optimization. We conducted 553 tests to investigate the settling characteristics of spherical and non-spherical particles in power-law fluids. Three major particle shapes (spherical, cubic, and cylindrical) and eight different particle sphericities were used to simulate cuttings and proppant, and power-law fluids were applied to simulate drilling and fracturing fluids. Based on the data analysis, a new drag coefficient-particle Reynolds number correlation was developed to determine the drag coefficient in a power-law fluid for spherical and non-spherical particles. The drag coefficient increases as the sphericity decreases for the same particle Reynolds number. For a specific particle shape, the drag coefficient decreases as the particle Reynolds number increases, but the decreasing trend is reduced at high particle Reynolds number conditions. An explicit settling-velocity equation was proposed to calculate the settling velocity of spherical and non-spherical particles in power-law fluids by considering the effect of sphericity. A suitable range for the proposed model is 0.0001 < Re <200, 0.471 <φ< 1, and 0.505 < n < 1. An illustrative example is presented to show how to calculate the drag coefficient and settling velocity in power-law fluids with given particle and fluid properties.展开更多
Coiled tubing(CT)drilling technology offers significant advantages in terms of cost and efficiency for exploitations of unconventional oil and gas resources.However,the development of CT drilling technol-ogy is restri...Coiled tubing(CT)drilling technology offers significant advantages in terms of cost and efficiency for exploitations of unconventional oil and gas resources.However,the development of CT drilling technol-ogy is restricted by cuttings accumulation in the wellbore due to non-rotation of the drill string and limited circulating capacity.Cuttings cleaning becomes more difficult with the wall resistance of pipe-wellbore annulus on the cutting transport.Accurate description of particle transport process in the pipe-wellbore annulus is,therefore,important for improving the wellbore cleanliness.In this study,high-speed cam-era is used to record and analyze the settling process of particles in the transparent annulus filled with power-law fluids.A total of 540 tests were carried out,involving dimensionless diameters of 0.10-0.95 and particle Reynolds Numbers of 0.01-12.97,revealing the effect of the dimensionless diameter and particle Reynolds number on the annulus wall effect,and the wall factor model with an average relative error of2.75%was established.In addition,a dimensionless parameter,Archimedes number,independent of the settling velocity,was introduced to establish an explicit model of the settling velocity of spherical particles in the vertical annulus,with the average relative error of 7.89%.Finally,a calculation example was provided to show how to use the explicit model of settling velocity in annulus.The results of this study are expected to provide guidance for field engineers to improve the wellbore cleanliness of coiled tubing drilling.展开更多
Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the wakes produced by upstream particles.In this work,this ph...Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the wakes produced by upstream particles.In this work,this phenomenon is studied for suspension having particles with different densities by numerical simulations.The particle-fluid interactions are modelled using immersed boundary method and inter-particle collisions are modelled using discrete element method.In simulations,settling Reynolds number is always kept above 250 and the suspension solid volume fraction is nearly 0.1 percent.Two particle density ratios(i.e.density of heavy particles to lighter particles)equal to 4:1 and 2:1 and particles with same density are studied.For each density ratio,the percentage volume fraction of each particle density is nearly varied from 0.8 to 0.2.Settling characteristics such as microstructures of settling particle,average settling velocity and velocity fluctuations of settling particles are studied.Simulations show that for different density particles settling characteristics of suspension is largely dominated by heavy particles.At the end of paper,the underlying physics is explained for the anomalies observed in simulation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40476039)
文摘Based on the general relationship described by Cheng between the drag coefficient and the Reynolds number of a particle, a new relationship between the Reynolds number and a dimensionless particle parameter is proposed. Using a trial-and-error procedure to minimize errors, the coefficients were determined and a formula was developed for predicting the settling velocity of natural sediment particles. This formula has higher prediction accuracy than other published formulas and it is applicable to all Reynolds numbers less than 2× 10^5.
基金Project(51174032)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0225)supported by the Program for New Century Excellent Talents in University,ChinaProject(FRF-TP-09-001A)supported by the Fundamental Research Funds for the Central Universities,China
文摘Rapid dewatering and thickening of whole-tailings with ultrafine particles is one of the most important processes for the whole-tailings paste preparation. Deep-cone thickener, a kind of such process for the flocculation and settling of whole-tailings, is particularly necessary to study. However, there exist many problems in observing the flocculation and settling process of whole-tailings, as well as the particle size distribution(PSD) of whole-tailings floccules in deep-cone thickener. Population balance model(PBM) is applied to predict the PSD in deep-cone thickener, and LUO model and GHADIRI model are employed to study the aggregation and fragmentation mechanism of the whole-tailings particles, respectively. Through three-dimensional numerical simulation on the whole-tailings flocculation and settling in deep-cone thickener using computational fluid dynamics(CFD)-PBM, the distribution of density and turbulent kinetic energy in deep-cone thickener were obtained, at the same time the spatio-temporal changes of whole-tailings floccules particle size distribution are analyzed. Finally, the major flocculation position in deep-cone thickener is found and the flocculation settling rules of whole-tailings are achieved.
基金the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)China Scholarship Council(201906440166)for their financial supportfinancial support provided by the Natural Sciences and Engineering Research Council of Canada(NSERC RGPIN-2016-04647 KURU)。
文摘Hole cleaning is a complex process as there are many variables affecting cuttings removal(e.g.drilling fluid type,density,flow rate and rheological properties,cuttings size,drill pipe rotation speed).With the increasing number of drilling small diameter wells(e.g.coiled tubing drilling applications,ultra-deep wells drilled for exploitations of unconventional oil and gas resources),the wall resistance of the micro annulus also emerges as one of the most critical factors affecting the cuttings accumulation in wellbore.The eccentricity of drill pipes commonly observed during the drilling process of ultra-deep well and coiled tubing well makes the wall resistance effect on the cuttings transport even more prominent.Understanding the wall resistance effect on the particle settling behavior in eccentric annuli is,therefore,crucial for hydraulic design of efficient cuttings transport operations in these wells.In this study,a total of 196 sets of particle settling experiments were carried out to investigate the particle settling behavior in eccentric annuli filled with power-law fluids.The test matrix included the eccentricity ranges of 0-0.80,the dimensionless diameter ranges of 0.13-0.75 and the particle Reynolds number ranges of 0.09-32.34.A high-speed camera was used to record the particle settling process and determine the influences of the eccentricity,the dimensionless diameter,the fluid rheological properties,and the solid particle characteristics on the wall factor and the particle settling velocity.The functional relationship among the dimensionless diameter,the particle Reynolds number,and the wall factor was determined by using the method of controlling variables.An eccentric annulus wall factor model with average relative error of 5.16%was established.Moreover,by introducing Archimedes number,an explicit model of particle settling velocity in the eccentric annulus with average relative error of 10.17%was established.A sample calculation of particle settling velocity was provided to show the application of the explicit model.Results of this study can be used as a guideline by field engineers to improve hydraulic design of cuttings transport operations in concentric and eccentric annuli.
基金supported by the National Natural Science Foundation of China (Nos. 51134022 and 51174203)the Key Project of Chinese National Programs for Fundamental Research and Development (No. 2012CB214904)+2 种基金the National Natural Science Foundation of China for Innovative Research Group (No. 50921002)the Natural Science Foundation of Jiangsu Province (No. BK2010002)the Fundamental Research Funds for the Central Universities (Nos. 2010QNB11 and 2010ZDP01A06)
文摘In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The results show that the main resistance forces as the tracing particles settled in an air-solid MSFB were motion resistance force and yield force.The motion resistance and yield forces greatly hindered the free settling of the particles by greatly decreasing the acceleration for settling process of the particles.The acceleration decreased from 3022.62 cm/s 2 to zero in 0.1 s,and in the end,the particles stopped in the air-solid MSFB.The yield force on particles increased with increasing the magnetic field intensity,resulting in decrease of the quasi-zero settling displacement.However,the yield force on particles decreased with increasing the fluidized air velocity,leading to increase of the quasi-zero settling displacement.When the structure and operating parameters of the air-solid MSFB were set up,the yield stress on particles stopped in an air-solid MSFB was a function of diameter and density of particles.The settling displacements of equal diameter particles increased with increasing their densities,and the settling displacements of equal density particles increased with increasing their diameters.
文摘Settling characteristics of floes, including relative settling velocity, relative flocculation coefficient and flocculation exponent, are obtained by the suspended load equations for different size fractions. Data of the Changjiang Estuary suggest that level of flocculation changes from river section, river mouth (turbidity maximum) to offshore area in sequence of low, very high and high. The settling characteristics of floes reflected by in situ estimation performs a similar feature as that obtained from still water experiment.
文摘Settling particulate matter (SPM) was collected by using sediment traps at four stations in a survey section from Qingdao to Cheju-do, across the Huanghai Sea cold water mass (HSCWM), in August 2002. The sediment traps were planted in three layers: the upper layer of the thermocline (ULT) above the HSCWM, the lower layer of the thermocline (LLT), and the bottom layer of water column (BL). To determine the particle flux, the contents of organic carbon (POC), organic nitrogen (PON), total carbon (PC), and total phosphorous (PP) in SPM were analyzed, and two flux models (Ⅰ and Ⅱ) were improved to calculate the resuspension ratio, with an assumption in Model Ⅰ that the vertical flux of SPM in the LLT equals the net vertical flux of SPM in the whole water column. An X value, i.e., the fraction of the resuspension flux originating from the surficial sediments nearby the sampling station, was deduced from Model Ⅰ to estimate the contribution of lateral currents to the total resuspension flux. The results showed that inorganic particles, fecal pellets, and miscellaneous aggregates were the major types of SPM in the HSCWM, and the contents of POC, PON, PC, and PP all decreased with water depth. A great deal of fecal pellets found in the LLT indicates that the main space producing biogenic SPM is the thermocline, and especially the LLT, where the C/N ratio is lower than that in the ULT. The resuspension ratios, 90%-96% among stations, imply strong impact ofresuspension on particle flux in the BL. These values were not significantly different between the two flux models, suggesting that the hypothesis in Model Ⅰ that the flux in the LLT equaling the net flux to the bottom is acceptable for shallow waters with stratification like the HSCWM. The POC export ratio from the HSCWM ranges from 35% to 68%. It benefits from the short sinking distance in shallow water. The upwelling in the HSCWM enhanced the POC flux through the water mass, and the lateral currents provides up to being greater than 50% ofresuspension flux in the BL according to evaluation of the X value.
基金supported by the Research Grants Council of Hong Kong (622910)
文摘Fluid-particle interaction underpins important behavior of granular media. Particle-scale simulation may help to provide key microscopic information governing the interaction and offer better understanding of granular media as a whole. This paper presents a coupled computational fluid dynamics and discrete element method (CFD-DEM) approach for this purpose. The granular particle system is modeled by DEM, while the fluid flow is simulated by solving the locally averaged Navier-Stokes equation with CFD. The coupling is considered by exchanging such interaction forces as drag force and buoyancy force between the DEM and CFD. The approach is benchmarked by two classic geomechanics problems for which analytical solutions are available, and is further applied to the prediction of sand heap formation in water through hopper flow. It is demonstrated that the key characteristic of granular materials interacting with pore water can be successfully captured by the proposed method.
文摘砂土液化是常见的地震灾害,目前应用于研究砂土液化动力特性的室内试验以及模型试验还不能全面反映土体液化全过程。计算流体动力学(computational fluid dynamics,CFD)与离散元法(discrete element method,DEM)耦合模拟方法能够准确地模拟各类水土耦合问题。通过二次开发的CFD-DEM流固耦合模块实现离散元软件PFC3D与计算流体力学软件OpenFOAM之间的力学信息交互,利用颗粒水下自由沉降验证该方法的可行性。利用PFC3D软件模拟室内循环三轴试验标定出具有真实饱和砂土动力特性的数值砂样。根据已有的参数信息以及耦合模拟方法建立了饱和砂土的场地液化模型。模拟结果表明,离散元法能够复现室内砂土液化试验,标定参数可应用于场地液化模拟;单颗粒沉降速度与理论解一致验证了CFD-DEM耦合方法的准确性;峰值加速度0.25g下不同深度处土体均会发生液化,液化时超孔压比无法达到1,超孔压累计值由浅层往深层递增;液化后土体强度自下而上逐渐恢复,再固结的场地土体结构呈现均匀化发展趋势。
基金The authors express their appreciation to the Science Fund for Creative Research Groups of the National Natural Science Foun-dation of China (No. 51521063)the National Natural Science Foundation of China (No. U1562212)+2 种基金the National Science and Technology Major Project of China (Grant No. 2016ZX05023-006)the National Key Research and Development Program of China (Grant No. 2016YFE0124600)the State Scholarship Fund (CSC file No. 201706440059).
文摘Solid-particle settling occurs in many natural and industrial processes, such as in the transportation of drilling cuttings and fracturing proppant. Knowledge of the drag coefficient and settling velocity of cuttings and proppant is of significance to hydraulics design, wellbore cleanout, and fracture optimization. We conducted 553 tests to investigate the settling characteristics of spherical and non-spherical particles in power-law fluids. Three major particle shapes (spherical, cubic, and cylindrical) and eight different particle sphericities were used to simulate cuttings and proppant, and power-law fluids were applied to simulate drilling and fracturing fluids. Based on the data analysis, a new drag coefficient-particle Reynolds number correlation was developed to determine the drag coefficient in a power-law fluid for spherical and non-spherical particles. The drag coefficient increases as the sphericity decreases for the same particle Reynolds number. For a specific particle shape, the drag coefficient decreases as the particle Reynolds number increases, but the decreasing trend is reduced at high particle Reynolds number conditions. An explicit settling-velocity equation was proposed to calculate the settling velocity of spherical and non-spherical particles in power-law fluids by considering the effect of sphericity. A suitable range for the proposed model is 0.0001 < Re <200, 0.471 <φ< 1, and 0.505 < n < 1. An illustrative example is presented to show how to calculate the drag coefficient and settling velocity in power-law fluids with given particle and fluid properties.
基金express their appreciation to National Key Research and Development Program(2019YFA0708300)the Strategic Coop-eration Technology Projects of CNPC and CUPB(ZIZX2020-03)China Scholarship Council(201906440166)for their financial support.
文摘Coiled tubing(CT)drilling technology offers significant advantages in terms of cost and efficiency for exploitations of unconventional oil and gas resources.However,the development of CT drilling technol-ogy is restricted by cuttings accumulation in the wellbore due to non-rotation of the drill string and limited circulating capacity.Cuttings cleaning becomes more difficult with the wall resistance of pipe-wellbore annulus on the cutting transport.Accurate description of particle transport process in the pipe-wellbore annulus is,therefore,important for improving the wellbore cleanliness.In this study,high-speed cam-era is used to record and analyze the settling process of particles in the transparent annulus filled with power-law fluids.A total of 540 tests were carried out,involving dimensionless diameters of 0.10-0.95 and particle Reynolds Numbers of 0.01-12.97,revealing the effect of the dimensionless diameter and particle Reynolds number on the annulus wall effect,and the wall factor model with an average relative error of2.75%was established.In addition,a dimensionless parameter,Archimedes number,independent of the settling velocity,was introduced to establish an explicit model of the settling velocity of spherical particles in the vertical annulus,with the average relative error of 7.89%.Finally,a calculation example was provided to show how to use the explicit model of settling velocity in annulus.The results of this study are expected to provide guidance for field engineers to improve the wellbore cleanliness of coiled tubing drilling.
文摘Dilute suspension of particles with same density and size develops clusters when settle at high Reynolds number(≥250).It is due to particles entrapment in the wakes produced by upstream particles.In this work,this phenomenon is studied for suspension having particles with different densities by numerical simulations.The particle-fluid interactions are modelled using immersed boundary method and inter-particle collisions are modelled using discrete element method.In simulations,settling Reynolds number is always kept above 250 and the suspension solid volume fraction is nearly 0.1 percent.Two particle density ratios(i.e.density of heavy particles to lighter particles)equal to 4:1 and 2:1 and particles with same density are studied.For each density ratio,the percentage volume fraction of each particle density is nearly varied from 0.8 to 0.2.Settling characteristics such as microstructures of settling particle,average settling velocity and velocity fluctuations of settling particles are studied.Simulations show that for different density particles settling characteristics of suspension is largely dominated by heavy particles.At the end of paper,the underlying physics is explained for the anomalies observed in simulation.