Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the resul...Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the results are in good agreement with the experimental ones.The deformation modes,mechanical properties,and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities.The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed.In addition,gradient design along the direction of impact can increase the initial peak stress of ROH and accelerate its densification phase.Gradient design perpendicular to the impact direction can enhance the energy absorption performance of ROH,especially for ROH,with wall thickness increasing from the inside outwards.Compared to ROH with uniform wall thickness at the same relative density,ROH with a gradient design can increase the plateau stress by over half.With the elevation of impact velocity,the plateau stress and specific energy absorption exhibit an upward trend,aligning with the dynamic performance pattern observed in conventional honeycombs.The results can be used as a reference for the design and application of honeycomb and provide a new idea for developing more efficient and reliable energy-absorbing materials.展开更多
The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The va...The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The various forms of hexagonal antenna array geometries can be used for applications like surveillance tracking in phased array radar and wireless communication systems.This work proposes the generalized array factor(AF)for the hexagonal antenna array geometry based on time modulation.The time modulation in generalized hexagonal geometry can maintain the fixed static amplitude excitation,giving more flexibility over time.Furthermore,a novel trapezoidal switching function is also proposed and applied to the generalized array factor to enable future researchers to use this array factor in the field of advancement to observe how switching schemes like trapezoidal and rectangular affect the array pattern's side lobe level(SLL).The generalized equation can be utilized for the analysis and synthesis of radiation characteristics of the time-modulated hexagonal array(TMHA),time-modulated concentric hexagonal array(TMCHA),time-modulated hexagonal cylindrical array(TMHCA),and time-modulated hexagonal concentric cylindrical array(TMHCCA).The numerical result illustrates the generation of AF of time-modulated hexagonal structures and also shows that the trapezoidal switching sequence outperforms the rectangular switch using the cat swarm optimization(CSO)approach.展开更多
Due to the unique deformation characteristics of auxetic materials(Poisson’s ratioμ<0),they have better shock resistance and energy absorption properties than traditional materials.Inspired by the concept of vari...Due to the unique deformation characteristics of auxetic materials(Poisson’s ratioμ<0),they have better shock resistance and energy absorption properties than traditional materials.Inspired by the concept of variable crosssection design,a new auxetic re-entrant honeycomb structure is designed in this study.The detailed design method of re-entrant honeycomb with variable cross-section(VCRH)is provided,and five VCRH structures with the same relative density and different cross-section change rates are proposed.The in-plane impact resistance and energy absorption abilities of VCRH under constant velocity are investigated by ABAQUS/EXPLICIT.The results show that the introduction of variable cross-section design can effectively improve the impact resistance and energy absorption abilities of auxetic re-entrant honeycombs.The VCRH structure has better Young’s modulus,plateau stress,and specific energy absorption(SEA)than traditional re-entrant honeycomb(RH).The influence of microstructure parameters(such as cross-section change rateα)on the dynamic impact performance of VCRH is also studied.Results show that,with the increase in impact velocity andα,the plateau stress and SEA of VCRH increase.A positive correlation is also found between the energy absorption efficiency,impact load uniformity andαunder both medium and high impact speeds.These results can provide a reference for designing improved auxetic re-entrant honeycomb structures.展开更多
The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent th...The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.展开更多
Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous car...Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous carbon materials composed of abundant graphene/hexagonal boron nitride(G/h-BN)heterostructures.Metal Ni powder and nanoscale h-BN sheets are used as a catalytic substrate/hard template and“nucleation seed”for the formation of the heterostructure,respectively.As-prepared G/h-BN heterostructures exhibit enhanced electrocatalytic activity toward H_(2)O_(2) generation with 86%-95%selectivity at the range of 0.45-0.75 V versus reversible hydrogen electrode(RHE)and a positive onset potential of 0.79 versus RHE(defined at a ring current density of 0.3 mA cm^(-2))in the alkaline solution.In a flow cell,G/h-BN heterostructured electrocatalyst has a H_(2)O_(2) production rate of up to 762 mmol g_(catalyst)^(-1) h^(-1) and Faradaic efficiency of over 75%during 12 h testing,superior to the reported carbon-based electrocatalysts.The density functional theory simulation suggests that the B atoms at the interface of the G/h-BN heterostructure are the key active sites.This research provides a new route to activate carbon catalysts toward highly active and selective O_(2)-to-H_(2)O_(2) conversion.展开更多
To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coa...To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.展开更多
Chemical vapor deposition is considered as the most hopeful method for the synthesis of large-area high-quality hexagonal boron nitride on the substrate of catalytic metal. However, the size the hexagonal boron nitrid...Chemical vapor deposition is considered as the most hopeful method for the synthesis of large-area high-quality hexagonal boron nitride on the substrate of catalytic metal. However, the size the hexagonal boron nitride films are limited to the size of growth chamber, which indicates a lower production efficiency. In this paper, the utilization efficiency of growth chamber is highly improved by alternately stacking multiple pieces of Cu foils and carbon fiber surface felt with porous structure. Uniform and continuous hexagonal boron nitride films are prepared on Cu foils through chemical vapor deposition utilizing ammonia borane as the precursor. This work develops a simple and practicable method for high-throughput preparation of hexagonal boron nitride films, which could contribute to the industrial application of hexagonal boron nitride. .展开更多
In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact inte...In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.展开更多
Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclu...Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclusion The elastic solution of a straight dislocation parallel to the quasiperiodic axis in 1D hexagonal quasicrystals was obtained and the generalized Peach Koehler force on a dislocation in quasicrystals was given.展开更多
Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grindin...Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity.展开更多
基金This work is supported by the National Natural Science Foundation of China(No.11902232).
文摘Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the results are in good agreement with the experimental ones.The deformation modes,mechanical properties,and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities.The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed.In addition,gradient design along the direction of impact can increase the initial peak stress of ROH and accelerate its densification phase.Gradient design perpendicular to the impact direction can enhance the energy absorption performance of ROH,especially for ROH,with wall thickness increasing from the inside outwards.Compared to ROH with uniform wall thickness at the same relative density,ROH with a gradient design can increase the plateau stress by over half.With the elevation of impact velocity,the plateau stress and specific energy absorption exhibit an upward trend,aligning with the dynamic performance pattern observed in conventional honeycombs.The results can be used as a reference for the design and application of honeycomb and provide a new idea for developing more efficient and reliable energy-absorbing materials.
文摘The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The various forms of hexagonal antenna array geometries can be used for applications like surveillance tracking in phased array radar and wireless communication systems.This work proposes the generalized array factor(AF)for the hexagonal antenna array geometry based on time modulation.The time modulation in generalized hexagonal geometry can maintain the fixed static amplitude excitation,giving more flexibility over time.Furthermore,a novel trapezoidal switching function is also proposed and applied to the generalized array factor to enable future researchers to use this array factor in the field of advancement to observe how switching schemes like trapezoidal and rectangular affect the array pattern's side lobe level(SLL).The generalized equation can be utilized for the analysis and synthesis of radiation characteristics of the time-modulated hexagonal array(TMHA),time-modulated concentric hexagonal array(TMCHA),time-modulated hexagonal cylindrical array(TMHCA),and time-modulated hexagonal concentric cylindrical array(TMHCCA).The numerical result illustrates the generation of AF of time-modulated hexagonal structures and also shows that the trapezoidal switching sequence outperforms the rectangular switch using the cat swarm optimization(CSO)approach.
基金This research is supported by the National Natural Science Foundation of China(No.11902232).
文摘Due to the unique deformation characteristics of auxetic materials(Poisson’s ratioμ<0),they have better shock resistance and energy absorption properties than traditional materials.Inspired by the concept of variable crosssection design,a new auxetic re-entrant honeycomb structure is designed in this study.The detailed design method of re-entrant honeycomb with variable cross-section(VCRH)is provided,and five VCRH structures with the same relative density and different cross-section change rates are proposed.The in-plane impact resistance and energy absorption abilities of VCRH under constant velocity are investigated by ABAQUS/EXPLICIT.The results show that the introduction of variable cross-section design can effectively improve the impact resistance and energy absorption abilities of auxetic re-entrant honeycombs.The VCRH structure has better Young’s modulus,plateau stress,and specific energy absorption(SEA)than traditional re-entrant honeycomb(RH).The influence of microstructure parameters(such as cross-section change rateα)on the dynamic impact performance of VCRH is also studied.Results show that,with the increase in impact velocity andα,the plateau stress and SEA of VCRH increase.A positive correlation is also found between the energy absorption efficiency,impact load uniformity andαunder both medium and high impact speeds.These results can provide a reference for designing improved auxetic re-entrant honeycomb structures.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. 61125103)the Vacuum Electronics National Lab Foundation, China (Grant No. 9140C050101110C0501)the Fundamental Research Funds for the Central Universities, China (Grant Nos. ZYGX2009Z003 and ZYGX2010J054)
文摘The re-entrant double-staggered ladder slow-wave structure is employed in a high-power V-band coupled-cavity traveling-wave tube. This structure has a wide bandwidth, a moderate interaction impedance, and excellent thermal dissipation properties, as well as easy fabrication. A well-matched waveguide coupler is proposed for the structure. Combining the design of attenuators, a full-scale three-dimensional circuit model for the V-band coupled-cavity traveling- wave tube is constructed. The electromagnetic characteristics and the beam wave interaction of this structure are investigated. The beam current is set to be 100 mA, and the cathode voltage is tuned from 16.8 kV to 15.8 kV. The calculation results show that this tube can produce a saturated average output power over 100 W with an instantaneous bandwidth greater than 1.25 GHz in the frequency ranging from 58 GHz to 62 GHz. The corresponding gain and electronic efficiency can reach over 32 dB and 6.5%, respectively.
基金supported by the“National Natural Science Foundation of China (Nos.51902162,21901154)”the FoundationResearch Project of Jiangsu Province (BK20221338)+1 种基金Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,International Innovation Center for Forest Chemicals and Materials,Nanjing Forestry University,merit-based funding for Nanjing innovation and technology projects,Shanghai Pujiang Program (21PJD022)the Foundation of Jiangsu Key Lab of Biomass Energy and Material (JSBEM-S-202101).
文摘Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous carbon materials composed of abundant graphene/hexagonal boron nitride(G/h-BN)heterostructures.Metal Ni powder and nanoscale h-BN sheets are used as a catalytic substrate/hard template and“nucleation seed”for the formation of the heterostructure,respectively.As-prepared G/h-BN heterostructures exhibit enhanced electrocatalytic activity toward H_(2)O_(2) generation with 86%-95%selectivity at the range of 0.45-0.75 V versus reversible hydrogen electrode(RHE)and a positive onset potential of 0.79 versus RHE(defined at a ring current density of 0.3 mA cm^(-2))in the alkaline solution.In a flow cell,G/h-BN heterostructured electrocatalyst has a H_(2)O_(2) production rate of up to 762 mmol g_(catalyst)^(-1) h^(-1) and Faradaic efficiency of over 75%during 12 h testing,superior to the reported carbon-based electrocatalysts.The density functional theory simulation suggests that the B atoms at the interface of the G/h-BN heterostructure are the key active sites.This research provides a new route to activate carbon catalysts toward highly active and selective O_(2)-to-H_(2)O_(2) conversion.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102
文摘To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.
文摘Chemical vapor deposition is considered as the most hopeful method for the synthesis of large-area high-quality hexagonal boron nitride on the substrate of catalytic metal. However, the size the hexagonal boron nitride films are limited to the size of growth chamber, which indicates a lower production efficiency. In this paper, the utilization efficiency of growth chamber is highly improved by alternately stacking multiple pieces of Cu foils and carbon fiber surface felt with porous structure. Uniform and continuous hexagonal boron nitride films are prepared on Cu foils through chemical vapor deposition utilizing ammonia borane as the precursor. This work develops a simple and practicable method for high-throughput preparation of hexagonal boron nitride films, which could contribute to the industrial application of hexagonal boron nitride. .
基金Project supported by the National Natural Science Foundation of China(Nos.11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation(No.2019M652563)。
文摘In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.
文摘Aim To study dislocation elasticity theory in quasicrystals. Methods A dislocation was separated into pure edge part and pure screw part and their superposition was used to find the elastic field. Results and Conclusion The elastic solution of a straight dislocation parallel to the quasiperiodic axis in 1D hexagonal quasicrystals was obtained and the generalized Peach Koehler force on a dislocation in quasicrystals was given.
基金Project (BK2009379) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject (1006-56XNA12069) supported by the Nanjing University of Aeronautics and Astronautics Research Funding, China+3 种基金Projects (51172108, 91023020) supported by the National Natural Science Foundation of ChinaProject (IRT0968) supported by the Program for Changjiang Scholars and Innovative Research Team in University, ChinaProject (NCET-10-0070) supported by the Program for New Century Excellent Talents in University, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity.