Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet ...Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet and the thermal plasma jet on the flow characteristics are addressed. The numerical results show that the dimensionless location of the stagnation layer is significantly affected by the momentum flux ratio, but it is not dependent on the distance.Specifically, the stagnation layer is closer to the plasma torch outlet with the increase of the momentum flux ratio. Furthermore, the flow regimes of the stagnation layer and the flow characteristics of the thermal plasma jet are closely related to the momentum flux ratio. The characteristic frequencies associated with the different regimes are identified. The deflecting oscillation flow regimes are found when the momentum flux ratio is low, which provokes axial velocity fluctuations inside the thermal plasma jet. By contrast, for cases with a high momentum flux ratio, flapping flow regimes are distinguished. The thermal plasma jets are very stable and the axial velocity fluctuations mainly exist in the stagnation layer.展开更多
As an active flow control technology and with the advantages of no moving components, the Sweeping jet actuator has become a hotspot in the field of flow control. However, the linear relationship between oscillation f...As an active flow control technology and with the advantages of no moving components, the Sweeping jet actuator has become a hotspot in the field of flow control. However, the linear relationship between oscillation frequency and momentum coefficient in a sweeping jet actuator makes it difficult to determine the dominant factors that affect control effectiveness. Decoupling the oscillation frequency and momentum coefficient, as well as determining the control mechanism, is the focus of studying the sweeping jet actuator. In this study, a novel sweeping jet actuator is designed using synthetic jets instead of feedback channels and applied to the flow separation control of NACA0018 airfoil. This article studies the control effect under three oscillation frequencies of F<sup>+</sup> = f × c/U<sub>∞</sub> = 1, 10, 100 and three momentum coefficients of C<sub>μ</sub> = 0.45%, 0.625%, 0.9%. The numerical results indicate that all three oscillation frequencies have good control effects on flow separation, and the control effect is best when F<sup>+</sup> = 1, with the maximum lift coefficient increasing by approximately 14% compared to the other two cases. And the sweeping jet actuator has a better ability to control flow separation as the momentum coefficient increases. By decoupling the characteristics of the sweeping jet actuator and conducting numerical analysis of the flow control effect, it will promote its better engineering application in the field of flow control. .展开更多
Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehic...Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehicles.The re-entrant jet and compression wave resulting from the collapse of cavity vapour are pivotal factors contributing to cavity instability.Concurrently,these phenomena significantly modulate the evolution of cavitation flow.In this paper,numerical investigations into cloud cavitation over a Clark-Y hydrofoil were conducted,utilizing the Large Eddy Simulation(LES)turbulence model and the Volume of Fluid(VOF)method within the OpenFOAM framework.Comparative analysis of results obtained at different angles of attack is undertaken.A discernible augmentation in cavity thickness is observed concomitant with the escalation in attack angle,alongside a progressive intensification in pressure at the leading edge of the hydrofoil,contributing to the suction force.These results can serve as a fundamental point of reference for gaining a deeper comprehension of cloud cavitation dynamics.展开更多
The medium-temperature T dependence of the jet transport coefficient̂q was studied via the nuclear modification factor RAA(p_(T))and elliptical flow parameter v_(2)(p_(T))for large transverse momentum p_(T) hadrons in...The medium-temperature T dependence of the jet transport coefficient̂q was studied via the nuclear modification factor RAA(p_(T))and elliptical flow parameter v_(2)(p_(T))for large transverse momentum p_(T) hadrons in high-energy nucleus-nucleus collisions.Within a next-to-leading-order perturbative QCD parton model for hard scatterings with modified fragmentation functions due to jet quenching controlled by q,we check the suppression and azimuthal anisotropy for large p_(T) hadrons,and extract q by global fits to RAA(pT)and v_(2)(pT)data in A+A collisions at RHIC and LHC,respectively.The numerical results from the best fits show that q∕T^(3) goes down with local medium-temperature T in the parton jet trajectory.Compared with the case of a constant q∕T^(3),the going-down T dependence of q∕T^(3) makes a hard parton jet to lose more energy near T_(c) and therefore strengthens the azimuthal anisotropy for large pT hadrons.As a result,v_(2)(p_(T))for large pT hadrons was enhanced by approximately 10%to better fit the data at RHIC/LHC.Considering the first-order phase transition from QGP to the hadron phase and the additional energy loss in the hadron phase,v_(2)(p_(T))is again enhanced by 5-10%at RHIC/LHC.展开更多
Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper,...Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper, we introduce a novel plasma jet morphology known as the large-scale cold plasma jet(LSCPJ), characterized by the presence of both a central conical plasma jet and a peripheral trumpet-like diffuse plasma jet. The experimental investigations have identified the factors influencing the conical and the trumpet-like diffuse plasma jet, and theoretical simulations have shed light on the role of the flow field and the electric field in shaping the formation of the LSCPJ. It is proved that, under conditions of elevated helium concentration, the distributions of impurity gas particles and the electric field jointly determine the plasma jet’s morphology. High-speed ICCD camera images confirm the dynamic behavior of plasma bullets in LSCPJ, which is consistent with the theoretical analysis. Finally, it is demonstrated that when applied to the surface treatment of silicone rubber, LSCPJ can achieve a treatment area over 28 times larger than that of APCPJ under equivalent conditions. This paper uncovers the crucial role of impurity gases and electric fields in shaping plasma jet morphology and opens up the possibility of efficiently diversifying plasma jet generation effects through external electromagnetic fields. These insights hold the promise of reducing the generation cost of plasma jets and expanding their applications across various industrial sectors.展开更多
The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It...The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.展开更多
Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressur...Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.展开更多
The characteristics of the flowfields of a synthetic jet actuator are experimentally investigated with the slot-nozzle driven by the piezoelectric membrane. The particle image velocimetry (PIV) and the hot-wire anem...The characteristics of the flowfields of a synthetic jet actuator are experimentally investigated with the slot-nozzle driven by the piezoelectric membrane. The particle image velocimetry (PIV) and the hot-wire anemometer are utilized to measure the flowfields and the velocity profiles of the actuator with different actuating factors. Analytical results show that pairs of counter-rotating vortices are generated near the nozzle. With the development of the synthetic ject, the synthetic jet rapidly spreads in the slot-width direction; while in the slot-length direction, it contracts firstly and slowly spreads. The centerline velocity distribution has a up-down tendency varying with axial distances, and accelerates to its maximum at z/b= 10. The transverse velocity profile across the slot-width is centro-symmetric and self-similar. However, the velocity profiles across the slot-length are saddle-like near the nozzle. It shows that there are two resonance frequencies for the actuator. If the actuator works with the resonance frequency, the vorticity and the velocity of the synthetic jet are higher than those of other frequencies. Compared with the continuous jet, the synthetic jet shows special flow characteristics.展开更多
Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal je...Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 MPa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of p articles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.展开更多
Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, ...Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow.展开更多
Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To sup...Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To suppress cavitation,based on the idea of blocking the re-entrant jets,a special surface flow structure of 2D hydrofoil was proposed. The through-hole was made in the proper position of the hydrofoil. The incoming flow can outflow from this jet-hole automatically depending on the pressure difference between pressure side and suction side. Re-entrant jet growth can be weakened by optimizing the jet-hole geometry. Based on the standard k-ε turbulence model and Schnerr & Sauer cavitation model,under different cavitation numbers( σ) and jet-angles( β) for NACA0066( 2D) hydrofoil with 8° angles of attack,cavitation field numerical analysis was carried out. The results show that 2D hydrofoil cavitation flow had a strong unsteadiness. Making a jet-hole at the junction between the re-entrant jet and cavity can effectively minimize cloud cavitation. For a certain cavitation condition,optimal jet-angles( β) can be obtained to control cavitation growth. For the same β,the effects of cavitation suppression were changed with different cavitation numbers( σ). Consequently,suitable jet-angle and jet-position could extend the stable operating range of the hydrofoil.展开更多
This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid b...This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid by one-way coupling of solid phase due to its dilute distribution.The simulation results agreed well with experiments.It was found that after impinging particle attrition occurred and particles became round with decreasing length-ratio and particle breakage occurred along the "long" direction.Both experiment and simulations found that the erosion generated on the sample could be divided into three regions that were nominated as stagnant region,cutting transition region and wall jet region.Most particle-wall impacts were found to occur in the cutting transition region and the wall jet region.In the cutting transition region,holes and lip-shaped hogbacks were generated in the same direction as the flow imping.In the wall jet region,furrows and grooves were generated.The averaged grooves depth tended to become constant with the progress of impinging and reach the steady state of erosion in the end.In addition,it was found that impinging effect increased erosion and anti-wear rate.展开更多
A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wav...A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wave successfully, there may exist two types of detonations. If the detonation velocity is greater than the velocity of coming flow, there will be a normal detonation here. Because of the influence of boundary layer separation, the upstream detonation velocity is much greater than the Chapman-Jouguet (C J) detonation velocity. On the other hand, if the detonation velocity is less than the velocity of coming flow, an oblique detonation wave (ODW) will form. The ODW needs a continuous hot jet to sustain itself. If the jet pressure is lower than a certain value, the ODW will decouple. In contrast, the normal detonation wave can sustain itself without the hot jet.展开更多
The paper focuses on the triple jets interaction with a hypersonic external flow on a revolution body. The experimental model is a ogive-cylinder body with three supersonic nozzles, which are aligned along the flow di...The paper focuses on the triple jets interaction with a hypersonic external flow on a revolution body. The experimental model is a ogive-cylinder body with three supersonic nozzles, which are aligned along the flow direction. The freestream Mach numbers are 5 and 6. The spatial and surface flow characteristics are illustrated by the schlieren photographs and the typical pressure distribution. The results show that there are multi-wave system, separation, reattachment, multi-peak pressure, high-pressure and low-pressure zone boundaries obvious distinction in tri-jets interference flowfield. The present paper also analyzes how do the pressure ratio, the angle of attack, and Mach number effect on tri-jets interaction characteristics.展开更多
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based ...Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based on the jet diameter.Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena,including flow structures, turbulent characters and frequency behaviors,have been studied.The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures,vortical structures and jet shear layers.The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio.Turbulent characters are clarified to be closely related to the flow structures.The jet penetration increases with the increase of the momentum ratio.Moreover,the dominant frequencies of the flow structures are obtained using spectral analysis.The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow展开更多
Active control of wall his is important in both application and basic researches. In order to establish a solid background for the expected application,it is necessary to perform detailed studies on the base nows,on t...Active control of wall his is important in both application and basic researches. In order to establish a solid background for the expected application,it is necessary to perform detailed studies on the base nows,on their stability characteristics and on the identification technique of coherent structures. This paper is a summarizing article rather than a detailed technical report, Its main purpose is just to introduce the recent progress in the related area.展开更多
An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless st...An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experi- mental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination pro-cess, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chroma- tism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.展开更多
The flow around a square cylinder with a synthetic jet positioned at the rear surface is numerically investigated with the unsteady Reynolds-averaged Navier-Stokes(URANS)method.Instead of the typical sinusoidal wave,a...The flow around a square cylinder with a synthetic jet positioned at the rear surface is numerically investigated with the unsteady Reynolds-averaged Navier-Stokes(URANS)method.Instead of the typical sinusoidal wave,a bi-frequency signal is adopted to generate the synthetic jet.The bi-frequency signal consists of a basic sinusoidal wave and a high-frequency wave.Cases with various amplitudes of the high-frequency component are simulated.It is found that synthetic jets actuated by bi-frequency signals can realize better drag reduction with lower energy consumption when appropriate parameter sets are applied.A new quantity,i.e.,the actuation efficiency Ae,is used to evaluate the controlling efficiency.The actuation efficiency Ae reaches its maximum of 0.2668 when the amplitude of the superposed high-frequency signal is 7.5%of the basic signal.The vortex structures and frequency characteristics are subsequently analyzed to investigate the mechanism of the optimization of the bi-frequency signal.When the synthetic jet is actuated by a single-frequency signal with a characteristic velocity of 0.112 m/s,the wake is asymmetrical.The alternative deflection of vortex pairs and the peak at half of the excitation frequency in the power spectral density(PSD)function are detected.In the bi-frequency cases with the same characteristic velocity,the wake gradually turns to be symmetrical with the increase in the amplitude of the high-frequency component.Meanwhile,the deflection of the vortex pairs and the peak at half of the excitation frequency gradually disappear as well.展开更多
A compact pneumatic pulse-jet pump with a Venturi-like reverse flow diverter,which consists of a nozzle and diffuser,is designed for lifting and transporting a hazardous fluid through a narrow mounting hole.The pumpin...A compact pneumatic pulse-jet pump with a Venturi-like reverse flow diverter,which consists of a nozzle and diffuser,is designed for lifting and transporting a hazardous fluid through a narrow mounting hole.The pumping performance for a liquid mixture or a liquid-solid mixture is examined in terms of the effects of liquid viscosity,particle mass concentration,lifting height,and compression pressure.Results reveal that the pumping performance of the compact pneumatic pulse-jet pump is controlled by jet inertia and the flow resistance of the riser tube positioned after the diffuser.The capacity of the compact pneumatic pulse-jet pump increases with compression pressure and decreases with liquid viscosity.However,even for a liquid mixture with a high viscosity of 7.38 mPa·s,a pumping capacity of 170.7 L·h-1 was observed.For a liquid mixture,two dimensionless indices of performance were found to be the ratio of Euler numbers Euout/EuDV and the suction factor q.As the liquid-solid mixture was lifted to elevation of 6.74 m by the compact pump,the particle size distributions of the liquid-solid mixture in the tank and from the riser tube outlet were determined by a particle size analyzer and found to coincide well.展开更多
Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the...Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the jet diameter(d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of enhancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.展开更多
基金supported by National Natural Science Foundation of China (Nos. 12035015 and 12105282)。
文摘Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet and the thermal plasma jet on the flow characteristics are addressed. The numerical results show that the dimensionless location of the stagnation layer is significantly affected by the momentum flux ratio, but it is not dependent on the distance.Specifically, the stagnation layer is closer to the plasma torch outlet with the increase of the momentum flux ratio. Furthermore, the flow regimes of the stagnation layer and the flow characteristics of the thermal plasma jet are closely related to the momentum flux ratio. The characteristic frequencies associated with the different regimes are identified. The deflecting oscillation flow regimes are found when the momentum flux ratio is low, which provokes axial velocity fluctuations inside the thermal plasma jet. By contrast, for cases with a high momentum flux ratio, flapping flow regimes are distinguished. The thermal plasma jets are very stable and the axial velocity fluctuations mainly exist in the stagnation layer.
文摘As an active flow control technology and with the advantages of no moving components, the Sweeping jet actuator has become a hotspot in the field of flow control. However, the linear relationship between oscillation frequency and momentum coefficient in a sweeping jet actuator makes it difficult to determine the dominant factors that affect control effectiveness. Decoupling the oscillation frequency and momentum coefficient, as well as determining the control mechanism, is the focus of studying the sweeping jet actuator. In this study, a novel sweeping jet actuator is designed using synthetic jets instead of feedback channels and applied to the flow separation control of NACA0018 airfoil. This article studies the control effect under three oscillation frequencies of F<sup>+</sup> = f × c/U<sub>∞</sub> = 1, 10, 100 and three momentum coefficients of C<sub>μ</sub> = 0.45%, 0.625%, 0.9%. The numerical results indicate that all three oscillation frequencies have good control effects on flow separation, and the control effect is best when F<sup>+</sup> = 1, with the maximum lift coefficient increasing by approximately 14% compared to the other two cases. And the sweeping jet actuator has a better ability to control flow separation as the momentum coefficient increases. By decoupling the characteristics of the sweeping jet actuator and conducting numerical analysis of the flow control effect, it will promote its better engineering application in the field of flow control. .
基金supported by the National Natural Science Foundation of China(Nos.12202011,12332014)China Postdoctoral Science Foundation(No.2022M710190).
文摘Cavitation is a prevalent phenomenon within the domain of ship and ocean engineering,predominantly occurring in the tail flow fields of high-speed rotating propellers and on the surfaces of high-speed underwater vehicles.The re-entrant jet and compression wave resulting from the collapse of cavity vapour are pivotal factors contributing to cavity instability.Concurrently,these phenomena significantly modulate the evolution of cavitation flow.In this paper,numerical investigations into cloud cavitation over a Clark-Y hydrofoil were conducted,utilizing the Large Eddy Simulation(LES)turbulence model and the Volume of Fluid(VOF)method within the OpenFOAM framework.Comparative analysis of results obtained at different angles of attack is undertaken.A discernible augmentation in cavity thickness is observed concomitant with the escalation in attack angle,alongside a progressive intensification in pressure at the leading edge of the hydrofoil,contributing to the suction force.These results can serve as a fundamental point of reference for gaining a deeper comprehension of cloud cavitation dynamics.
基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)Science and Technology Program of Guangzhou(No.2019050001)National Science Foundation of China(Nos.12347130 and 11935007).
文摘The medium-temperature T dependence of the jet transport coefficient̂q was studied via the nuclear modification factor RAA(p_(T))and elliptical flow parameter v_(2)(p_(T))for large transverse momentum p_(T) hadrons in high-energy nucleus-nucleus collisions.Within a next-to-leading-order perturbative QCD parton model for hard scatterings with modified fragmentation functions due to jet quenching controlled by q,we check the suppression and azimuthal anisotropy for large p_(T) hadrons,and extract q by global fits to RAA(pT)and v_(2)(pT)data in A+A collisions at RHIC and LHC,respectively.The numerical results from the best fits show that q∕T^(3) goes down with local medium-temperature T in the parton jet trajectory.Compared with the case of a constant q∕T^(3),the going-down T dependence of q∕T^(3) makes a hard parton jet to lose more energy near T_(c) and therefore strengthens the azimuthal anisotropy for large pT hadrons.As a result,v_(2)(p_(T))for large pT hadrons was enhanced by approximately 10%to better fit the data at RHIC/LHC.Considering the first-order phase transition from QGP to the hadron phase and the additional energy loss in the hadron phase,v_(2)(p_(T))is again enhanced by 5-10%at RHIC/LHC.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011505)Shenzhen Science and Technology Program(Nos.JCYJ 20220530142808020 and JSGG20220606140202005)+1 种基金China Postdoctoral Science Foundation(No.2023 M731878)Project(No.SKLD22KM17)by State Key Laboratory of Power System Operation and Control。
文摘Atmospheric pressure cold plasma jets(APCPJs) typically exhibit a slender, conical structure,which imposes limitations on their application for surface modification due to the restricted treatment area. In this paper, we introduce a novel plasma jet morphology known as the large-scale cold plasma jet(LSCPJ), characterized by the presence of both a central conical plasma jet and a peripheral trumpet-like diffuse plasma jet. The experimental investigations have identified the factors influencing the conical and the trumpet-like diffuse plasma jet, and theoretical simulations have shed light on the role of the flow field and the electric field in shaping the formation of the LSCPJ. It is proved that, under conditions of elevated helium concentration, the distributions of impurity gas particles and the electric field jointly determine the plasma jet’s morphology. High-speed ICCD camera images confirm the dynamic behavior of plasma bullets in LSCPJ, which is consistent with the theoretical analysis. Finally, it is demonstrated that when applied to the surface treatment of silicone rubber, LSCPJ can achieve a treatment area over 28 times larger than that of APCPJ under equivalent conditions. This paper uncovers the crucial role of impurity gases and electric fields in shaping plasma jet morphology and opens up the possibility of efficiently diversifying plasma jet generation effects through external electromagnetic fields. These insights hold the promise of reducing the generation cost of plasma jets and expanding their applications across various industrial sectors.
文摘The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.
文摘Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.
文摘The characteristics of the flowfields of a synthetic jet actuator are experimentally investigated with the slot-nozzle driven by the piezoelectric membrane. The particle image velocimetry (PIV) and the hot-wire anemometer are utilized to measure the flowfields and the velocity profiles of the actuator with different actuating factors. Analytical results show that pairs of counter-rotating vortices are generated near the nozzle. With the development of the synthetic ject, the synthetic jet rapidly spreads in the slot-width direction; while in the slot-length direction, it contracts firstly and slowly spreads. The centerline velocity distribution has a up-down tendency varying with axial distances, and accelerates to its maximum at z/b= 10. The transverse velocity profile across the slot-width is centro-symmetric and self-similar. However, the velocity profiles across the slot-length are saddle-like near the nozzle. It shows that there are two resonance frequencies for the actuator. If the actuator works with the resonance frequency, the vorticity and the velocity of the synthetic jet are higher than those of other frequencies. Compared with the continuous jet, the synthetic jet shows special flow characteristics.
基金supported by National Natural Science Foundation of China (Grant No. 50806031)
文摘Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 MPa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of p articles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.
基金supported by National Natural Science Foundation of China(Nos.51307030,51277038)
文摘Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow.
基金supported by the National Key Basic Research Special Foundation of China (2015CB057301)
文摘Cavitation caused vibration and noise of hydraulic machinery. To some extent,cavitation made fatigue damage in advance. Many scholars found that the re-entrant jets were the reasons of the shedding of cavities. To suppress cavitation,based on the idea of blocking the re-entrant jets,a special surface flow structure of 2D hydrofoil was proposed. The through-hole was made in the proper position of the hydrofoil. The incoming flow can outflow from this jet-hole automatically depending on the pressure difference between pressure side and suction side. Re-entrant jet growth can be weakened by optimizing the jet-hole geometry. Based on the standard k-ε turbulence model and Schnerr & Sauer cavitation model,under different cavitation numbers( σ) and jet-angles( β) for NACA0066( 2D) hydrofoil with 8° angles of attack,cavitation field numerical analysis was carried out. The results show that 2D hydrofoil cavitation flow had a strong unsteadiness. Making a jet-hole at the junction between the re-entrant jet and cavity can effectively minimize cloud cavitation. For a certain cavitation condition,optimal jet-angles( β) can be obtained to control cavitation growth. For the same β,the effects of cavitation suppression were changed with different cavitation numbers( σ). Consequently,suitable jet-angle and jet-position could extend the stable operating range of the hydrofoil.
基金supported by National Natural Science Foundation of China (Nos.5177622551876221)+1 种基金High-end Foreign Expert Introduction Project (G20190001270B18054)。
文摘This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid by one-way coupling of solid phase due to its dilute distribution.The simulation results agreed well with experiments.It was found that after impinging particle attrition occurred and particles became round with decreasing length-ratio and particle breakage occurred along the "long" direction.Both experiment and simulations found that the erosion generated on the sample could be divided into three regions that were nominated as stagnant region,cutting transition region and wall jet region.Most particle-wall impacts were found to occur in the cutting transition region and the wall jet region.In the cutting transition region,holes and lip-shaped hogbacks were generated in the same direction as the flow imping.In the wall jet region,furrows and grooves were generated.The averaged grooves depth tended to become constant with the progress of impinging and reach the steady state of erosion in the end.In addition,it was found that impinging effect increased erosion and anti-wear rate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91016028 and 91016012)
文摘A new method to initiate and sustain the detonation in supersonic flow is investigated. The reaction activity of coming flow may influence the result of detonation initiation. When a hot jet initiates a detonation wave successfully, there may exist two types of detonations. If the detonation velocity is greater than the velocity of coming flow, there will be a normal detonation here. Because of the influence of boundary layer separation, the upstream detonation velocity is much greater than the Chapman-Jouguet (C J) detonation velocity. On the other hand, if the detonation velocity is less than the velocity of coming flow, an oblique detonation wave (ODW) will form. The ODW needs a continuous hot jet to sustain itself. If the jet pressure is lower than a certain value, the ODW will decouple. In contrast, the normal detonation wave can sustain itself without the hot jet.
文摘The paper focuses on the triple jets interaction with a hypersonic external flow on a revolution body. The experimental model is a ogive-cylinder body with three supersonic nozzles, which are aligned along the flow direction. The freestream Mach numbers are 5 and 6. The spatial and surface flow characteristics are illustrated by the schlieren photographs and the typical pressure distribution. The results show that there are multi-wave system, separation, reattachment, multi-peak pressure, high-pressure and low-pressure zone boundaries obvious distinction in tri-jets interference flowfield. The present paper also analyzes how do the pressure ratio, the angle of attack, and Mach number effect on tri-jets interaction characteristics.
基金supported by the National Natural Science Foundation of China(11072236)the Fundamental Research Funds for the Central Universities(WK2090050007)
文摘Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based on the jet diameter.Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena,including flow structures, turbulent characters and frequency behaviors,have been studied.The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures,vortical structures and jet shear layers.The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio.Turbulent characters are clarified to be closely related to the flow structures.The jet penetration increases with the increase of the momentum ratio.Moreover,the dominant frequencies of the flow structures are obtained using spectral analysis.The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow
文摘Active control of wall his is important in both application and basic researches. In order to establish a solid background for the expected application,it is necessary to perform detailed studies on the base nows,on their stability characteristics and on the identification technique of coherent structures. This paper is a summarizing article rather than a detailed technical report, Its main purpose is just to introduce the recent progress in the related area.
文摘An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experi- mental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination pro-cess, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chroma- tism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.
基金supported by the National Natural Science Foundation of China(No.11721202)。
文摘The flow around a square cylinder with a synthetic jet positioned at the rear surface is numerically investigated with the unsteady Reynolds-averaged Navier-Stokes(URANS)method.Instead of the typical sinusoidal wave,a bi-frequency signal is adopted to generate the synthetic jet.The bi-frequency signal consists of a basic sinusoidal wave and a high-frequency wave.Cases with various amplitudes of the high-frequency component are simulated.It is found that synthetic jets actuated by bi-frequency signals can realize better drag reduction with lower energy consumption when appropriate parameter sets are applied.A new quantity,i.e.,the actuation efficiency Ae,is used to evaluate the controlling efficiency.The actuation efficiency Ae reaches its maximum of 0.2668 when the amplitude of the superposed high-frequency signal is 7.5%of the basic signal.The vortex structures and frequency characteristics are subsequently analyzed to investigate the mechanism of the optimization of the bi-frequency signal.When the synthetic jet is actuated by a single-frequency signal with a characteristic velocity of 0.112 m/s,the wake is asymmetrical.The alternative deflection of vortex pairs and the peak at half of the excitation frequency in the power spectral density(PSD)function are detected.In the bi-frequency cases with the same characteristic velocity,the wake gradually turns to be symmetrical with the increase in the amplitude of the high-frequency component.Meanwhile,the deflection of the vortex pairs and the peak at half of the excitation frequency gradually disappear as well.
文摘A compact pneumatic pulse-jet pump with a Venturi-like reverse flow diverter,which consists of a nozzle and diffuser,is designed for lifting and transporting a hazardous fluid through a narrow mounting hole.The pumping performance for a liquid mixture or a liquid-solid mixture is examined in terms of the effects of liquid viscosity,particle mass concentration,lifting height,and compression pressure.Results reveal that the pumping performance of the compact pneumatic pulse-jet pump is controlled by jet inertia and the flow resistance of the riser tube positioned after the diffuser.The capacity of the compact pneumatic pulse-jet pump increases with compression pressure and decreases with liquid viscosity.However,even for a liquid mixture with a high viscosity of 7.38 mPa·s,a pumping capacity of 170.7 L·h-1 was observed.For a liquid mixture,two dimensionless indices of performance were found to be the ratio of Euler numbers Euout/EuDV and the suction factor q.As the liquid-solid mixture was lifted to elevation of 6.74 m by the compact pump,the particle size distributions of the liquid-solid mixture in the tank and from the riser tube outlet were determined by a particle size analyzer and found to coincide well.
基金Supported by the National Natural Science Foundation of China(51106140)the Natural Science Foundation of Zhejiang Province(Z1110695)
文摘Experiments were carried out to study the heat transfer performance of an impinging jet in a cross flow.Several parameters including the jet-to-cross-flow mass ratio(X=2%-8%), the Reynolds number(Red=1434-5735)and the jet diameter(d=2-4 mm) were explored. The heat transfer enhancement factor was found to increase with the jet-to-cross-flow mass ratio and the Reynolds number, but decrease with the jet diameter when other parameters maintain fixed. The presence of a cross flow was observed to degrade the heat transfer performance in respect to the effect of impinging jet to the target surface only. In addition, an impinging jet was confirmed to be capable of enhancing the heat transfer process in considerable amplitude even though the jet was not designed to impinge on the target surface.