期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Thermodynamic Analysis of Hydrocarbon Refrigerants-Based Ethylene BOG Re-liquefaction System
1
作者 Boumedienne M. Beladjine Ahmed Ouadha Yacine Addad 《Journal of Marine Science and Application》 CSCD 2016年第3期321-330,共10页
The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction system that consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refri... The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction system that consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refrigeration cycle operating with a hydrocarbon refrigerant. The hydrocarbon refrigerants considered are propane(R290), butane(R600), isobutane(R600a), and propylene(R1270). A computer program written in FORTRAN is developed to compute parameters for characteristic points of the cycles and the system's performance, which is determined and analyzed using numerical solutions for the refrigerant condensation temperature, temperature in tank, and temperature difference in the cascade condenser. Results show that R600 a gives the best performance, followed by(in order) R600, R290, and R1270. Furthermore, it is found that an increase in tank temperature improves system performance but that an increase in refrigerant condensation temperature causes deterioration. In addition, it is found that running the system at a low temperature difference in the cascade condenser is advantageous. 展开更多
关键词 ethylene BOG re-liquefaction thermodynamic analysis hydrocarbon refrigerants
下载PDF
Performance assessment of prefabricated vertical drains in mitigating soil reliquefaction subjected to repeated seismic events using shaking table experiments
2
作者 Gowtham PADMANABHAN Ganesh Kumar SHANMUGAM 《Frontiers of Structural and Civil Engineering》 SCIE EI 2024年第3期411-427,共17页
The use of prefabricated vertical drains(PVD)in liquefiable deposits is gaining attention due to enhanced drainage.However,investigations on PVD in mitigating re-liquefaction during repeated shaking events are not ava... The use of prefabricated vertical drains(PVD)in liquefiable deposits is gaining attention due to enhanced drainage.However,investigations on PVD in mitigating re-liquefaction during repeated shaking events are not available.This study performed a series of shaking table experiments on untreated and PVD-treated specimens prepared with 40%and 60%relative density.Repeated sinusoidal loading was applied with an incremental peak acceleration of 0.1g,0.2g,0.3g,and 0.4g,at 5 Hz shaking frequency with 40 s duration.The performance of treated ground was evaluated based on the generation and dissipation of excess pore water pressure(EPWP),induced sand densification,subsidence,and cyclic stress ratio.In addition,the strain accumulated in fresh and exhumed PVD was investigated using geotextile tensile testing apparatus aided with digital image correlation.No evidence of pore pressure was reported up to 0.2g peak acceleration for 40%and 60%relative density specimens.The continuous occurrence of soil densification and drainage medium restrained and delayed the generation of EPWP and expedited the dissipation process.This study demonstrates PVD can mitigate re-liquefaction,without suffering from deterioration,when subjected to medium to high intense repeated shaking events. 展开更多
关键词 prefabricated vertical drains drainage re-liquefaction shaking table digital image correlation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部