This paper presents design of an self contained actuators unit in wide area damping control of power system in stabilizing system response for both nominal system condition and during actuator faults.First it is prese...This paper presents design of an self contained actuators unit in wide area damping control of power system in stabilizing system response for both nominal system condition and during actuator faults.First it is presented that use of multiple actuators in wide area control aid in improving damping in power system.A wide area damping controller feeding multiple actuators to satisfy multiple objectives in wide area damping control of power system is designed.Minimization of infinity norm of closed loop transfer function of power system with wide area controller in feedback path&closed loop poles placement techniques are used in controller synthesis.Second a reconfigurable control on the lines of fault hiding principle is added to the controller design to maintain system damping to pre-fault level in case of actuator faults.A reconfiguration component(RC)is activated on occurrence of actuator fault thereby reconfiguring system dynamics and redistributing wide area control signal among remaining active actuators.RC together with remaining active actuators and under same wide area damping controller maintains system damping to pre-fault level thereby preserving system dynamic response.In the reconfigurable control design presented here no new actuators outside the unit of actuators designed for wide area damping control is required.This makes for an self contained actuators unit in wide area damping control of power system both for nominal system condition and for system affected by actuator faults.A two area power system model is considered here for demonstrating effectiveness of designed robust damping controller with multiple outputs feeding multiple actuators in wide area control and illustrating the idea of self contained actuators unit for maintaining system damping in case of actuator faults.展开更多
The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both de...The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.展开更多
文摘This paper presents design of an self contained actuators unit in wide area damping control of power system in stabilizing system response for both nominal system condition and during actuator faults.First it is presented that use of multiple actuators in wide area control aid in improving damping in power system.A wide area damping controller feeding multiple actuators to satisfy multiple objectives in wide area damping control of power system is designed.Minimization of infinity norm of closed loop transfer function of power system with wide area controller in feedback path&closed loop poles placement techniques are used in controller synthesis.Second a reconfigurable control on the lines of fault hiding principle is added to the controller design to maintain system damping to pre-fault level in case of actuator faults.A reconfiguration component(RC)is activated on occurrence of actuator fault thereby reconfiguring system dynamics and redistributing wide area control signal among remaining active actuators.RC together with remaining active actuators and under same wide area damping controller maintains system damping to pre-fault level thereby preserving system dynamic response.In the reconfigurable control design presented here no new actuators outside the unit of actuators designed for wide area damping control is required.This makes for an self contained actuators unit in wide area damping control of power system both for nominal system condition and for system affected by actuator faults.A two area power system model is considered here for demonstrating effectiveness of designed robust damping controller with multiple outputs feeding multiple actuators in wide area control and illustrating the idea of self contained actuators unit for maintaining system damping in case of actuator faults.
文摘The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.