In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill...In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.展开更多
The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the co...The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.展开更多
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
Objective] This study was conducted to optimize cameI ia seed sheI fer-mentation conditions for ceI uIase production by Trichoderma koningi using response surface methodoIogy. [Method] Fermentation conditions for ceI ...Objective] This study was conducted to optimize cameI ia seed sheI fer-mentation conditions for ceI uIase production by Trichoderma koningi using response surface methodoIogy. [Method] Fermentation conditions for ceI uIase production from Trichoderma koningi were optimized with response surface method (RSM) by taking carboxymethyI ceI uIase (CMCase) activity as a response indicator. Three factors that affecting CMCase activity were screened out using singIe factor test among pretreatment methods of raw material, nitrogen sources, initial pH values, inocuIum voIume, fermentation time and voIume of Iiquid medium, they were fermentation time, initial pH value, and voIume of Iiquid medium. The optimum conditions of fer-mentation and interaction of the three factors were determined through Box-Behnken design and regression analysis using Design-Expert software. [Result] Pretreatment of cameI ia seed sheI with alkaline was most conducive to CMCase production. The use of 0.2% (NH4)2SO4 as nitrogen source, inocuIum size of 5%, initial pH value of 5.8 and voIume of Iiquid medium at 22 mI were the best fermentation conditions for maximizing CMCase production by T. koningi from cameI ia seed sheI . Under these conditions, 179.15 U/mI of CMCase was obtalned after 5 d of fermentation, which was improved by 24.52% compared with the maximum CMCase activity of singIe factor test. [Conclusion] The resuIts wiI provide some references for use of cameI ia seed sheI and ceI uIase production.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
A surface edge element method is proposed and implemented in the study ofelectromagnetic scattering fields of general targets. The basis functions for surfaces of arbitraryshape are derived according to the geometrica...A surface edge element method is proposed and implemented in the study ofelectromagnetic scattering fields of general targets. The basis functions for surfaces of arbitraryshape are derived according to the geometrical properties of each triangular patch. The proposedbasis functions are 3-D linear functions and the tangential components of the vectors are continuousas the traditional edge element method. Combined field integral equations (CFIE) that include bothelectrical field and magnetic field integral equations are used to model the electromagneticscattering of general dielectric targets. Special treatment for singularity is presented to enhancethe quality of numerical solutions. The proposed method is used to compute the scattering fieldsfrom various targets. Numerical results obtained by the proposed method are validated by resultsfrom other numerical methods.展开更多
Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
Studying and understanding of the surface topography variation are the basis for analyzing tribological problems,and characterization of worn surface is necessary.Fractal geometry offers a more accurate description fo...Studying and understanding of the surface topography variation are the basis for analyzing tribological problems,and characterization of worn surface is necessary.Fractal geometry offers a more accurate description for surface roughness that topographic surfaces are statistically self-similar and can be quantitatively evaluated by fractal parameters.The change regularity of worn surface topography is one of the most important aspects of running-in study.However,the existing research normally adopts only one friction matching pair to explore the surface topography change,which interrupts the running-in wear process and makes the experimental result lack authenticity and objectivity.In this paper,to investigate the change regularity of surface topography during the real running-in process,a series of running-in tests by changing friction pairs under the same operating conditions are conducted on UMT-II Universal Multifunction Tester.The surface profile data are acquired by MiaoXAM2.5X-50X Ultrahigh Precision Surface 3D Profiler and analyzed using fractal dimension D,scale coefficient C and characteristic roughness Ra *based on root mean square(RMS) method.The characterization effects of the three parameters are discussed and compared.The results obtained show that there exists remarkable fractal feature of surface topography during running-in process,both D and Ra *increase gradually,while C decreases slowly as the wear-in process goes on,and all parameters tend to be stable when the wear process steps into the normal wear process.Ra *illustrates higher sensitivity for rough surface characterization compared with the other two parameters.In addition,the running-in test carried with a set of identical surface properties is more scientific and reasonable than the traditional one.The proposed research further indicates that the fractal method can quantitatively measure the rough surface,which also provides an evidence for running-in process identification and tribology design.展开更多
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr...Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.展开更多
Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random error...Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.展开更多
Surface low/distortion is one of the most challenging surface deflections that have a great effect on the exterior appearance of automobiles.Most studies on surface distortion/deflection have focused on evaluation and...Surface low/distortion is one of the most challenging surface deflections that have a great effect on the exterior appearance of automobiles.Most studies on surface distortion/deflection have focused on evaluation and visualization techniques,the research work on correction or prevention of surface low/distortion is limited,and there is no perfect surface low/distortion corrective method that can satisfy the needs of the engineering.A B-spline based geometry morphing algorithm is proposed and then a new program based on UG-NX platform is developed to modify the die face in the surface low/distortion areas.To verify this developed system,the experimental dies that can replicate the surface low/distortion phenomenon successfully is put to use.Five geometric variables are introduced to describe the basic geometry of typical depression features of automotive outer panels.The experimental dies are then designed to reflect various combinations of these geometric parameters.The stamping experiments are conducted on cold rolled grade 5(CR5) sheet steel and various static measurements,such as oil-stoning,laser scanner,etc,are performed to measure and record the surface low/distortions.Three approaches including good bearing,holds in blank and die face morphing that aim to correct low/distortions are tried out and surface low/distortions are observed in the specimen with reverse draw depth of 10 mm.The measurement results show that die morphing is a practical and effective method to correct the surface low/distortion.The correction method proposed can be used to minimize the occurrence of surface low/distortion in die manufacturing,which has certain reference significance to the correction of surface low/distortion.展开更多
A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinite...A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.展开更多
Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the r...Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.展开更多
A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice f...A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice flour(15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit(KNU)/g α-amylase at 80 oC for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.展开更多
Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-ai...Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-aixs machining, which sometimes only take one given point as the compensative point at each given cutter location. This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts. Based on an improved cutting force/heat model and finite element method(FEM) simulation environment, a deflection error prediction model, which takes sequence of cutter contact lines as compensation targets, is established. And an iterative algorithm is presented to determine feasible cutter axis positions. The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm. The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction, and is also validated with flank milling experiment by using five-axis machine tool. At the same time, the deformation error is detected by using three-coordinate measuring machine. Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods. The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.展开更多
As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such...As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved, and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, th...This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.展开更多
Based on the classical response surface method (RSM), a novel RSM using improved experimental points (EPs) is presented for reliability analysis. Two novel points are included in the presented method. One is the u...Based on the classical response surface method (RSM), a novel RSM using improved experimental points (EPs) is presented for reliability analysis. Two novel points are included in the presented method. One is the use of linear interpolation, from which the total EPs for determining the RS are selected to be closer to the actual failure surface; the other is the application of sequential linear interpolation to control the distance be- tween the surrounding EPs and the center EP, by which the presented method can ensure that the RS fits the actual failure surface in the region of maximum likelihood as the center EPs converge to the actual most probable point (MPP). Since the fitting precision of the RS to the actual failure surface in the vicinity of the MPP, which has significant contribution to the probability of the failure surface being exceeded, is increased by the presented method, the precision of the failure probability calculated by RS is increased as well. Numerical examples illustrate the accuracy and efficiency of the presented method.展开更多
Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Neverthel...Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.展开更多
基金sponsored by the Graduate Student Research and Innovation Fund of Xinyang Normal University under No.2024KYJJ012.
文摘In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.
文摘The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金Supported by National High-tech R&D Program of China(863 Program,2013AA102-107)~~
文摘Objective] This study was conducted to optimize cameI ia seed sheI fer-mentation conditions for ceI uIase production by Trichoderma koningi using response surface methodoIogy. [Method] Fermentation conditions for ceI uIase production from Trichoderma koningi were optimized with response surface method (RSM) by taking carboxymethyI ceI uIase (CMCase) activity as a response indicator. Three factors that affecting CMCase activity were screened out using singIe factor test among pretreatment methods of raw material, nitrogen sources, initial pH values, inocuIum voIume, fermentation time and voIume of Iiquid medium, they were fermentation time, initial pH value, and voIume of Iiquid medium. The optimum conditions of fer-mentation and interaction of the three factors were determined through Box-Behnken design and regression analysis using Design-Expert software. [Result] Pretreatment of cameI ia seed sheI with alkaline was most conducive to CMCase production. The use of 0.2% (NH4)2SO4 as nitrogen source, inocuIum size of 5%, initial pH value of 5.8 and voIume of Iiquid medium at 22 mI were the best fermentation conditions for maximizing CMCase production by T. koningi from cameI ia seed sheI . Under these conditions, 179.15 U/mI of CMCase was obtalned after 5 d of fermentation, which was improved by 24.52% compared with the maximum CMCase activity of singIe factor test. [Conclusion] The resuIts wiI provide some references for use of cameI ia seed sheI and ceI uIase production.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.
文摘A surface edge element method is proposed and implemented in the study ofelectromagnetic scattering fields of general targets. The basis functions for surfaces of arbitraryshape are derived according to the geometrical properties of each triangular patch. The proposedbasis functions are 3-D linear functions and the tangential components of the vectors are continuousas the traditional edge element method. Combined field integral equations (CFIE) that include bothelectrical field and magnetic field integral equations are used to model the electromagneticscattering of general dielectric targets. Special treatment for singularity is presented to enhancethe quality of numerical solutions. The proposed method is used to compute the scattering fieldsfrom various targets. Numerical results obtained by the proposed method are validated by resultsfrom other numerical methods.
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.
基金supported by National Natural Science Foundation of China (Grant No.50975276,Grant No.50475164)National Basic Research Program of China (973 Program,Grant No.2007CB607605)Doctoral Programs Foundation of Ministry of Education of China (Grant No.200802900513)
文摘Studying and understanding of the surface topography variation are the basis for analyzing tribological problems,and characterization of worn surface is necessary.Fractal geometry offers a more accurate description for surface roughness that topographic surfaces are statistically self-similar and can be quantitatively evaluated by fractal parameters.The change regularity of worn surface topography is one of the most important aspects of running-in study.However,the existing research normally adopts only one friction matching pair to explore the surface topography change,which interrupts the running-in wear process and makes the experimental result lack authenticity and objectivity.In this paper,to investigate the change regularity of surface topography during the real running-in process,a series of running-in tests by changing friction pairs under the same operating conditions are conducted on UMT-II Universal Multifunction Tester.The surface profile data are acquired by MiaoXAM2.5X-50X Ultrahigh Precision Surface 3D Profiler and analyzed using fractal dimension D,scale coefficient C and characteristic roughness Ra *based on root mean square(RMS) method.The characterization effects of the three parameters are discussed and compared.The results obtained show that there exists remarkable fractal feature of surface topography during running-in process,both D and Ra *increase gradually,while C decreases slowly as the wear-in process goes on,and all parameters tend to be stable when the wear process steps into the normal wear process.Ra *illustrates higher sensitivity for rough surface characterization compared with the other two parameters.In addition,the running-in test carried with a set of identical surface properties is more scientific and reasonable than the traditional one.The proposed research further indicates that the fractal method can quantitatively measure the rough surface,which also provides an evidence for running-in process identification and tribology design.
基金supported by the National Natural Science Foundation of China(Grant No.51579193)the Science and Technology Planning Project of Guizhou Province(Grant No.[2016]1154)
文摘Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.
基金Supported by National Natural Science Foundation of China(Grant No.51375013)Anhui Provincial Natural Science Foundation of China(Grant No.1208085ME64)
文摘Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.
基金supported by Key Project of National Natural Science Foundation of China (Grant No. 10932003)National Hi-tech Research and Development Program of China (863 Program,Grant No.2009AA04Z101)National Basic Research Program of China (973Program,Grant No. 2010CB832700)
文摘Surface low/distortion is one of the most challenging surface deflections that have a great effect on the exterior appearance of automobiles.Most studies on surface distortion/deflection have focused on evaluation and visualization techniques,the research work on correction or prevention of surface low/distortion is limited,and there is no perfect surface low/distortion corrective method that can satisfy the needs of the engineering.A B-spline based geometry morphing algorithm is proposed and then a new program based on UG-NX platform is developed to modify the die face in the surface low/distortion areas.To verify this developed system,the experimental dies that can replicate the surface low/distortion phenomenon successfully is put to use.Five geometric variables are introduced to describe the basic geometry of typical depression features of automotive outer panels.The experimental dies are then designed to reflect various combinations of these geometric parameters.The stamping experiments are conducted on cold rolled grade 5(CR5) sheet steel and various static measurements,such as oil-stoning,laser scanner,etc,are performed to measure and record the surface low/distortions.Three approaches including good bearing,holds in blank and die face morphing that aim to correct low/distortions are tried out and surface low/distortions are observed in the specimen with reverse draw depth of 10 mm.The measurement results show that die morphing is a practical and effective method to correct the surface low/distortion.The correction method proposed can be used to minimize the occurrence of surface low/distortion in die manufacturing,which has certain reference significance to the correction of surface low/distortion.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.
基金supported by National Natural Science Foundation of China(Grant Nos.51175017,51245027)Innovation Foundation of Beihang University for PhD Graduates,China(Grant No.YWF-12-RBYJ008)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111102110011)
文摘Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.
文摘A response surface method was employed to study the effect of α-amylase concentration, hydrolysis temperature and time on the production of high protein glutinous rice flour(HPGRF). The suspension of glutinous rice flour(15%) that contained 6.52% protein was gelatinized and subsequently hydrolyzed by thermostable α-amylase. The hydrolysis yielded 0.144–0.222 g/g HPGRF with 29.4%–45.4% protein content. Hydrolysis time exerted a significant effect, while enzyme concentration and hydrolysis temperature showed insignificant effect on the protein content and production yield of HPGRF. The result of response surface method showed that the optimum condition for the production of HPGRF that contained at least 36% protein was treating gelatinized 15% glutinous rice flour suspension with 0.90 Kilo Novo α-amylase Unit(KNU)/g α-amylase at 80 oC for 99 min. By carrying out the predicted hydrolysis condition, HPGRF with 35.9% protein and 61.8% carbohydrates was resulted. The process yielded 0.172 g/g HPGRF. HPGRF contained higher amount of essential amino acids compared to glutinous rice flour. HPGRF had higher solubility and lower swelling power, and also showed no pasting peak compared with glutinous rice flour.
基金supported by Key Program of National Natural Science Foundation of China (Grant No. 50835001) General Program of National Natural Science Foundation of China (Grant No. 50775023)Program for New Century Excellent Talents of Ministry of Education of China (Grant No. NCET-08-081)
文摘Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-aixs machining, which sometimes only take one given point as the compensative point at each given cutter location. This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts. Based on an improved cutting force/heat model and finite element method(FEM) simulation environment, a deflection error prediction model, which takes sequence of cutter contact lines as compensation targets, is established. And an iterative algorithm is presented to determine feasible cutter axis positions. The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm. The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction, and is also validated with flank milling experiment by using five-axis machine tool. At the same time, the deformation error is detected by using three-coordinate measuring machine. Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods. The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.
文摘As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved, and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the National Defense Foundation of China
文摘This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.
基金Project supported by the National Natural Science Foundation of China (No.10572117)the Program for New Century Excellent Talents in University (No.05-0868)
文摘Based on the classical response surface method (RSM), a novel RSM using improved experimental points (EPs) is presented for reliability analysis. Two novel points are included in the presented method. One is the use of linear interpolation, from which the total EPs for determining the RS are selected to be closer to the actual failure surface; the other is the application of sequential linear interpolation to control the distance be- tween the surrounding EPs and the center EP, by which the presented method can ensure that the RS fits the actual failure surface in the region of maximum likelihood as the center EPs converge to the actual most probable point (MPP). Since the fitting precision of the RS to the actual failure surface in the vicinity of the MPP, which has significant contribution to the probability of the failure surface being exceeded, is increased by the presented method, the precision of the failure probability calculated by RS is increased as well. Numerical examples illustrate the accuracy and efficiency of the presented method.
基金supported by the National Key Research and Development Program of China(2020YFB1713500)the Chinese 02 Special Fund(2017ZX02408003)+2 种基金the Open Fund of National Joint Engineering Research Center for abrasion control and molding of metal materials(HKDNM201807)the Student Research Training Plan of Henan University of Science and Technology(2020026)the National Undergraduate Innovation and Entrepreneurship Training Program(202010464031,202110464005)。
文摘Rechargeable aqueous Zn-ion batteries(AZIBs)are one of the most promising energy storage devices for large-scale energy storage owing to their high specific capacity,eco-friendliness,low cost and high safety.Nevertheless,zinc metal anodes suffer from severe dendrite growth and side reactions,resulting in the inferior electrochemical performance of AZIBs.To address these problems,surface modification of zinc metal anodes is a facile and effective method to regulate the interaction between the zinc anode and an electrolyte.In this review,the current challenges and strategies for zinc metal anodes are presented.Furthermore,recent advances in surface modification strategies to improve their electrochemical performance are concluded and discussed.Finally,challenges and prospects for future development of zinc metal anodes are proposed.We hope this review will be useful for designing and fabricating highperformance AZIBs and boosting their practical applications.