Aquatic macrophytic growth and its distribution in eutrophic lakes are described in relation to its sediment type and irradiance. Hence, it is necessary to characterize the response of macrophytic growth to lake sedim...Aquatic macrophytic growth and its distribution in eutrophic lakes are described in relation to its sediment type and irradiance. Hence, it is necessary to characterize the response of macrophytic growth to lake sediment and its re-suspension. We conducted two independent experiments to measure the effects of sediment and its re-suspension on the growth of Vallisneria asiatica Miki. Based on our study, we conclude that the amount of total biomass of V. asiatica is related, in important ways, to the type of sediment and its re-suspension. According to our comparison, plants and biomass cultured on lake sediments are 2.1 times and 1.5 times greater than that on brown clay from nearby places beside Lake Taihu. The number of plants and the amount of biomass in a turbid water column are smaller than those in a clear water column. The results indicate that the nutrient-rich lake sediments have promoted the growth of V. asiatica, while the re-suspension of the sediment leads to a high turbid level and low light penetration which has a negative impact on the growth of V. asiatica.展开更多
The Huanghe River(Yellow River)is known by its high suspended sediment concentration(SSC)in its river mouth tidal flat.However,the factors controlling the high SSC over there are not well understood.Therefore,we condu...The Huanghe River(Yellow River)is known by its high suspended sediment concentration(SSC)in its river mouth tidal flat.However,the factors controlling the high SSC over there are not well understood.Therefore,we conducted 7-d hydrodynamic observations(water depth,wave height,and current velocity)and SSC measurements on the tidal flat off the Huanghe River Mouth.The data shows that in most of time,under the calm sea condition,the SSC ranges 0.1–3.5 g/L,and sediment discharge from the river is the main source.However,when hydrodynamics are enhanced in a tidal cycle and large-scale erosion occurs on the seafloor,resuspended sediment becomes the main source,and the SSC in the water column reaches 17.3 g/L.We find the suspended sediment flux is mainly controlled by the tidal current and Stokes drift,while the wave-induced shear stress could also affect the variation of suspended sediment flux.During the observation period,when sea under calm-rippled conditions,the current-induced resuspended sediment concentration(RSC)was greater than the wave-induced RSC.In contrast,in smooth-wavelet sea conditions,the wave-induced RSC was greater than the current-induced RSC,for instance,a single wave event was found to cause 11.8 cm seabed erosion within 6 h.This study reveals different controlling factors for the high SSC near a river-influenced tidal flat,and helps us get a better understanding of a delta's depositional and erosional mechanisms.展开更多
The variation of phosphorus (P) bioavailability in terms of water soluble P (WSP ), readily desorbable P (RDP), algal available P (AAP), and NaHCo3 extracting P (Olsen-P) in the re-suspended sediments was in...The variation of phosphorus (P) bioavailability in terms of water soluble P (WSP ), readily desorbable P (RDP), algal available P (AAP), and NaHCo3 extracting P (Olsen-P) in the re-suspended sediments was investigated in laboratory experiments, in which the waters and sediments were taken from campus canal. The results indicate that sediment re-suspension can promote the migration, of soluble reactive P (SRP) from overlying water to sediments. The contents of AAP and Olsen-P in re-suspended sediments reduced obviously, whereas the values of the sediments in the control increased slightly, compared with the initial state, indicating that the P bioavailability in the sediments could be rcduced evidently due to sediment re-suspension. The content and characteristics of iron-bound P (BD-P) significantly affect the formation of AAP. The formation of OlservP has close relationship with the contents of BD-P, almninium-botmd P (AI-P), and organic P (NaOH-nrP).展开更多
Sediment deposition problems have attracted the interest of engineers and researchers.Several experimental studies have been conducted on scour depth using turbulent jets.However,field observation and monitoring have ...Sediment deposition problems have attracted the interest of engineers and researchers.Several experimental studies have been conducted on scour depth using turbulent jets.However,field observation and monitoring have rarely been reported.This study aimed to eliminate sediments on a tidal riverbed using a prototype device,which consisted of a set of submerged vertical water nozzles and submerged horizontal air nozzles.The effectiveness of the water jet in sediment removal during spring and neap tides was evaluated.The quantitative relationships of dimen-sionless parameters,such as(1)the relative sediment scour volume versus the number of flows from the jet exit,(2)the relative sediment scour volume versus the relative scour depth,and(3)the relative scour size versus the relative jet intensity,were analyzed.The results showed that the freshwater flowing to the sea affected the sediment scour volume during the falling cycle of spring tides.In contrast,the rising cycle of spring tides retarded the freshwater flow,resulting in a decrease in the sediment scour volume.A steep water surface slope accelerated the river flow and further influenced the cross-flow current around the study area.As a result,a highly diffusive turbulent flow was produced,causing sus-pended sediments to be rapidly removed from the scour hole center.An increase in the number of flows from the jets led to intensified diffusion of turbulent energy into the flow.The rapidly varying water depth caused jet energy to be dissipated before approaching the riverbed,and it significantly affected the scour process during the spring-tide period.The proposed equations can be used to estimate the scour volume,scour size,and re-suspended sediments in tidal rivers within defined ranges of parameters.展开更多
In this paper, the bottom of the Dianshan Lake was selected as a test sample. The dynamic release of contaminated sediments into the overlying water column was experimentally investigated in an open water channel unde...In this paper, the bottom of the Dianshan Lake was selected as a test sample. The dynamic release of contaminated sediments into the overlying water column was experimentally investigated in an open water channel under different hydrodynamic conditions. The experimental results indicate that the Total Phosphorus (TP) release process can be divided into three stages: rapid release, slow release and equilibration release. In the initial release stage the measured TP concentration changes along the depth. The TP concentration near the sediment-water interface is higher than that near the water surface, but the TP concentration becomes uniform along the depth after 3 h. The dynamic release of re-suspension sediment pollutants is about 6 times higher than the static release of sediment-water interface. There are three main types of release mechanism: diffusion release, re-suspended pore water mixing release and re-suspended particles desorbing release.展开更多
The deposition and the re-suspension of particulate matter(PM) in urban areas are the key processes that contribute not only to stormwater pollution, but also to air pollution. However, investigation of the deposition...The deposition and the re-suspension of particulate matter(PM) in urban areas are the key processes that contribute not only to stormwater pollution, but also to air pollution. However, investigation of the deposition and the re-suspension of PM is challenging because of the difficulties in distinguishing between the resuspended and the deposited PM. This study created two Bayesian Networks(BN) models to explore the deposition and the re-suspension of PM as well as the important influential factors. The outcomes of BN modelling revealed that deposition and re-suspension of PM10 occurred under both, high-traffic and low-traffic conditions, and the re-suspension of PM2.5 occurred under low-traffic conditions. The deposition of PM10 under low-volume traffic condition is 1.6 times higher than under highvolume traffic condition, which is attributed to the decrease in PM10 caused by relatively higher turbulence under high-volume traffic conditions. PM10 is more easily resuspended from road surfaces compared to PM2.5 as the particles which larger than the thickness of the laminar airflow over the road surface are more easily removed from road surfaces. The increase in wind speed contributes to the increase in PM build-up by transporting particulates from roadside areas to the road surfaces and the airborne PM2.5 and PM10 increases with the increase in relative humidity. The study outcomes provide a step improvement in the understanding of the transfer processes of PM2.5 and PM10 between atmosphere and urban road surfaces, which in turn will contribute to the effective design of mitigation measures for urban stormwater and air pollution.展开更多
基金Projects KZCX1-SW-12 supported by the Key Project of CAS 2002AA601011-04 by the Hi-tech Research and Development Program of China
文摘Aquatic macrophytic growth and its distribution in eutrophic lakes are described in relation to its sediment type and irradiance. Hence, it is necessary to characterize the response of macrophytic growth to lake sediment and its re-suspension. We conducted two independent experiments to measure the effects of sediment and its re-suspension on the growth of Vallisneria asiatica Miki. Based on our study, we conclude that the amount of total biomass of V. asiatica is related, in important ways, to the type of sediment and its re-suspension. According to our comparison, plants and biomass cultured on lake sediments are 2.1 times and 1.5 times greater than that on brown clay from nearby places beside Lake Taihu. The number of plants and the amount of biomass in a turbid water column are smaller than those in a clear water column. The results indicate that the nutrient-rich lake sediments have promoted the growth of V. asiatica, while the re-suspension of the sediment leads to a high turbid level and low light penetration which has a negative impact on the growth of V. asiatica.
基金Foundation item:The National Natural Science Foundation of China under contract Nos 41072215 and 41877223the Key Science and Technology Plan of Power China Huadong Engineering Corporation Limited under contract No.KY2018-ZD-01+1 种基金the Joint Fund of NSFC and Marine Science Research Centers of Shandong Province of China under contract No.U1906230the Marine Geological Survey Project of the China Geological Survey under contract No.GZH201100203.
文摘The Huanghe River(Yellow River)is known by its high suspended sediment concentration(SSC)in its river mouth tidal flat.However,the factors controlling the high SSC over there are not well understood.Therefore,we conducted 7-d hydrodynamic observations(water depth,wave height,and current velocity)and SSC measurements on the tidal flat off the Huanghe River Mouth.The data shows that in most of time,under the calm sea condition,the SSC ranges 0.1–3.5 g/L,and sediment discharge from the river is the main source.However,when hydrodynamics are enhanced in a tidal cycle and large-scale erosion occurs on the seafloor,resuspended sediment becomes the main source,and the SSC in the water column reaches 17.3 g/L.We find the suspended sediment flux is mainly controlled by the tidal current and Stokes drift,while the wave-induced shear stress could also affect the variation of suspended sediment flux.During the observation period,when sea under calm-rippled conditions,the current-induced resuspended sediment concentration(RSC)was greater than the wave-induced RSC.In contrast,in smooth-wavelet sea conditions,the wave-induced RSC was greater than the current-induced RSC,for instance,a single wave event was found to cause 11.8 cm seabed erosion within 6 h.This study reveals different controlling factors for the high SSC near a river-influenced tidal flat,and helps us get a better understanding of a delta's depositional and erosional mechanisms.
基金National High Technology Research and Development Program(863) of China(No.2003AA601070)National Natural Science Foundation of China(No.50908154)
文摘The variation of phosphorus (P) bioavailability in terms of water soluble P (WSP ), readily desorbable P (RDP), algal available P (AAP), and NaHCo3 extracting P (Olsen-P) in the re-suspended sediments was investigated in laboratory experiments, in which the waters and sediments were taken from campus canal. The results indicate that sediment re-suspension can promote the migration, of soluble reactive P (SRP) from overlying water to sediments. The contents of AAP and Olsen-P in re-suspended sediments reduced obviously, whereas the values of the sediments in the control increased slightly, compared with the initial state, indicating that the P bioavailability in the sediments could be rcduced evidently due to sediment re-suspension. The content and characteristics of iron-bound P (BD-P) significantly affect the formation of AAP. The formation of OlservP has close relationship with the contents of BD-P, almninium-botmd P (AI-P), and organic P (NaOH-nrP).
基金the Electricity Generating Authority of Thailand(Grant No.61F101000-11-I0.SS03F3008362-KMUTT).
文摘Sediment deposition problems have attracted the interest of engineers and researchers.Several experimental studies have been conducted on scour depth using turbulent jets.However,field observation and monitoring have rarely been reported.This study aimed to eliminate sediments on a tidal riverbed using a prototype device,which consisted of a set of submerged vertical water nozzles and submerged horizontal air nozzles.The effectiveness of the water jet in sediment removal during spring and neap tides was evaluated.The quantitative relationships of dimen-sionless parameters,such as(1)the relative sediment scour volume versus the number of flows from the jet exit,(2)the relative sediment scour volume versus the relative scour depth,and(3)the relative scour size versus the relative jet intensity,were analyzed.The results showed that the freshwater flowing to the sea affected the sediment scour volume during the falling cycle of spring tides.In contrast,the rising cycle of spring tides retarded the freshwater flow,resulting in a decrease in the sediment scour volume.A steep water surface slope accelerated the river flow and further influenced the cross-flow current around the study area.As a result,a highly diffusive turbulent flow was produced,causing sus-pended sediments to be rapidly removed from the scour hole center.An increase in the number of flows from the jets led to intensified diffusion of turbulent energy into the flow.The rapidly varying water depth caused jet energy to be dissipated before approaching the riverbed,and it significantly affected the scour process during the spring-tide period.The proposed equations can be used to estimate the scour volume,scour size,and re-suspended sediments in tidal rivers within defined ranges of parameters.
基金the National Natural Science Foundation of China (Grant Nos. 10972134, 11032007)the Shanghai Program for Innovative Research Team in Universities
文摘In this paper, the bottom of the Dianshan Lake was selected as a test sample. The dynamic release of contaminated sediments into the overlying water column was experimentally investigated in an open water channel under different hydrodynamic conditions. The experimental results indicate that the Total Phosphorus (TP) release process can be divided into three stages: rapid release, slow release and equilibration release. In the initial release stage the measured TP concentration changes along the depth. The TP concentration near the sediment-water interface is higher than that near the water surface, but the TP concentration becomes uniform along the depth after 3 h. The dynamic release of re-suspension sediment pollutants is about 6 times higher than the static release of sediment-water interface. There are three main types of release mechanism: diffusion release, re-suspended pore water mixing release and re-suspended particles desorbing release.
基金the support provided by the Inno-vative Research Group of the National Natural Science Foundation of China (No. 51721093)the National Key Research&Devel-opment Program (Nos. 2016YFA0602304,2016YFC0802500)+1 种基金the State Key Program of National Natural Science of China (No. 41530635)the Interdisciplinary Research Funds of Beijing Normal University。
文摘The deposition and the re-suspension of particulate matter(PM) in urban areas are the key processes that contribute not only to stormwater pollution, but also to air pollution. However, investigation of the deposition and the re-suspension of PM is challenging because of the difficulties in distinguishing between the resuspended and the deposited PM. This study created two Bayesian Networks(BN) models to explore the deposition and the re-suspension of PM as well as the important influential factors. The outcomes of BN modelling revealed that deposition and re-suspension of PM10 occurred under both, high-traffic and low-traffic conditions, and the re-suspension of PM2.5 occurred under low-traffic conditions. The deposition of PM10 under low-volume traffic condition is 1.6 times higher than under highvolume traffic condition, which is attributed to the decrease in PM10 caused by relatively higher turbulence under high-volume traffic conditions. PM10 is more easily resuspended from road surfaces compared to PM2.5 as the particles which larger than the thickness of the laminar airflow over the road surface are more easily removed from road surfaces. The increase in wind speed contributes to the increase in PM build-up by transporting particulates from roadside areas to the road surfaces and the airborne PM2.5 and PM10 increases with the increase in relative humidity. The study outcomes provide a step improvement in the understanding of the transfer processes of PM2.5 and PM10 between atmosphere and urban road surfaces, which in turn will contribute to the effective design of mitigation measures for urban stormwater and air pollution.