[Objective] The aim was to explore the response of different maize vari- eties in Guangxi to drought stress and re-watering at tasseling stage, so as to pro- vide reference for study on drought resistance mechanism, b...[Objective] The aim was to explore the response of different maize vari- eties in Guangxi to drought stress and re-watering at tasseling stage, so as to pro- vide reference for study on drought resistance mechanism, breeding of drought-re- sistant varieties and selection of maize varieties for fall sowing. [Method] At the tasseling stage, total five degrees of drought stress (4, 8, 12, 16 and 20 d) and corresponding re-watering after drought stress were simulated by a tub planting ex- periment in greenhouse for five different maize varieties (Guidan 0810, Dika 008, Zhengda 619, Chenyu 969, Guidan 901). Normal watering was set as the control. Sampling was carried out on Day 1 after drought stress and on Day 15 after re- watering, and the secondary root number, maximum root length, green leaf number, root dry weight and shoot dry weight were measured. At the harvest time, the ear yield per plant was measured. With yield as the basis, the drought resistance coef- ficient and drought resistance index were calculated. Cluster analysis was conducted for drought resistance coefficient. [Result] The shoot dry weight, root dry weight, secondary root number, maximum root length and green leaf number of maize in the treatment groups decreased compared with those in the control group. The ratio of each index between the treatment and control groups declined with the extension of drought stress. After re-watering, the re-growth amount of each index all de- creased as the stress time prolonged. Post-re-watering over compensation effect oc- curred in none of the indices except the maximum root length, after 4 days of drought stress. Under drought stress, the reductions of all the indices of Guidan 0810, Dika 008 and Zhengda 619 were smaller than those of Chenyu 969 and Guidan 901. After re-watering, the re-growth abilities of Guidan 0810, Dika 008 and Zhengda 619 were stronger than those of Chenyu 969 and Guidan 901. The drought resistance coefficients and drought resistance indexes of Guidan 0810, Dika 008 and Zhengda 619 were all greater than those of Chenyu 969 and Guidan 901. The results of drought resistance coefficient cluster analysis showed that the five maize varieties were classified into two groups: Guidan 0810, Dika 008 and Zheng- da 619 had strong drought resistance, while Guidan 901 and Chenyu 969 had weak drought resistance. [Conclusion] The root and shoot growth of Guidan 0810, Dika 008 and Zhengda 619 was slightly affected by drought stress during the tasseling period, and they restored the growth rapidly after re-watering, thus ensuring high biomass and yield. Therefore, Guidan 0810, Dika 008 and Zhengda 619 can be promoted as drought-resistant autumn maize varieties in Guangxi.展开更多
Drought is one of the main factors limiting rice (Oryza sativa L.) productivity and has become an increasingly severe problem in many regions worldwide. Establishing breeding programs to develop new drought-tolerant v...Drought is one of the main factors limiting rice (Oryza sativa L.) productivity and has become an increasingly severe problem in many regions worldwide. Establishing breeding programs to develop new drought-tolerant varieties requires an understanding of the effect of drought on rice plants and the mechanisms of drought tolerance in rice. We conducted a pot experiment to explore growth characteristics, root plasticity, and stomatal conductance in six rice varieties (DA8, Malagkit Pirurutong, Thierno Bande, Pate Blanc MN1, Kinandang Patong, and Moroberekan) in response to different drought stress and re-watering conditions. Drought stress significantly depressed plant growth, root size, and stomatal conductance in all experimental varieties. These negative effects depended on both the variety and the severity of the drought stress treatment. Under moderate drought stress (10 days after drought treatment), growth was less influenced in roots than in shoots. In contrast, there was an opposite trend under severe drought stress (15 days after drought treatment), with growth being more severely affected in roots than in shoots. Rice plants recovered from drought stress in terms of dry matter accumulation, root size, and stomatal conductance after re-watering;however, the recovery pattern differed among varieties. DA8 exhibited the highest dry weight accumulation and root size (root length, root surface area, root volume, fine root length, and thick root length) under well-watered, drought stress, and re-watering conditions. Kinandang Patong showed the highest recovery ability in dry matter accumulation, root length, root surface area, and stomatal conductance after re-watering. Malagkit Pirurutong expressed the poorest recovery ability in dry matter accumulation after re-watering. These three varieties might be selected for further experiments focusing on the mechanisms of drought tolerance and recovery ability in rice.展开更多
基金Supported by National High Technology Research and Development Program of China(2011AA10A103)National Key Technology Research and Development Program of China(2011BAD35B01)+1 种基金Key Research & Development Project of Guangxi Zhuang Autonomous Region(GK AB16380133)Science and Technology Development Fund of Guangxi Academy of Agricultural Sciences(GNK 2015YT24)~~
文摘[Objective] The aim was to explore the response of different maize vari- eties in Guangxi to drought stress and re-watering at tasseling stage, so as to pro- vide reference for study on drought resistance mechanism, breeding of drought-re- sistant varieties and selection of maize varieties for fall sowing. [Method] At the tasseling stage, total five degrees of drought stress (4, 8, 12, 16 and 20 d) and corresponding re-watering after drought stress were simulated by a tub planting ex- periment in greenhouse for five different maize varieties (Guidan 0810, Dika 008, Zhengda 619, Chenyu 969, Guidan 901). Normal watering was set as the control. Sampling was carried out on Day 1 after drought stress and on Day 15 after re- watering, and the secondary root number, maximum root length, green leaf number, root dry weight and shoot dry weight were measured. At the harvest time, the ear yield per plant was measured. With yield as the basis, the drought resistance coef- ficient and drought resistance index were calculated. Cluster analysis was conducted for drought resistance coefficient. [Result] The shoot dry weight, root dry weight, secondary root number, maximum root length and green leaf number of maize in the treatment groups decreased compared with those in the control group. The ratio of each index between the treatment and control groups declined with the extension of drought stress. After re-watering, the re-growth amount of each index all de- creased as the stress time prolonged. Post-re-watering over compensation effect oc- curred in none of the indices except the maximum root length, after 4 days of drought stress. Under drought stress, the reductions of all the indices of Guidan 0810, Dika 008 and Zhengda 619 were smaller than those of Chenyu 969 and Guidan 901. After re-watering, the re-growth abilities of Guidan 0810, Dika 008 and Zhengda 619 were stronger than those of Chenyu 969 and Guidan 901. The drought resistance coefficients and drought resistance indexes of Guidan 0810, Dika 008 and Zhengda 619 were all greater than those of Chenyu 969 and Guidan 901. The results of drought resistance coefficient cluster analysis showed that the five maize varieties were classified into two groups: Guidan 0810, Dika 008 and Zheng- da 619 had strong drought resistance, while Guidan 901 and Chenyu 969 had weak drought resistance. [Conclusion] The root and shoot growth of Guidan 0810, Dika 008 and Zhengda 619 was slightly affected by drought stress during the tasseling period, and they restored the growth rapidly after re-watering, thus ensuring high biomass and yield. Therefore, Guidan 0810, Dika 008 and Zhengda 619 can be promoted as drought-resistant autumn maize varieties in Guangxi.
文摘Drought is one of the main factors limiting rice (Oryza sativa L.) productivity and has become an increasingly severe problem in many regions worldwide. Establishing breeding programs to develop new drought-tolerant varieties requires an understanding of the effect of drought on rice plants and the mechanisms of drought tolerance in rice. We conducted a pot experiment to explore growth characteristics, root plasticity, and stomatal conductance in six rice varieties (DA8, Malagkit Pirurutong, Thierno Bande, Pate Blanc MN1, Kinandang Patong, and Moroberekan) in response to different drought stress and re-watering conditions. Drought stress significantly depressed plant growth, root size, and stomatal conductance in all experimental varieties. These negative effects depended on both the variety and the severity of the drought stress treatment. Under moderate drought stress (10 days after drought treatment), growth was less influenced in roots than in shoots. In contrast, there was an opposite trend under severe drought stress (15 days after drought treatment), with growth being more severely affected in roots than in shoots. Rice plants recovered from drought stress in terms of dry matter accumulation, root size, and stomatal conductance after re-watering;however, the recovery pattern differed among varieties. DA8 exhibited the highest dry weight accumulation and root size (root length, root surface area, root volume, fine root length, and thick root length) under well-watered, drought stress, and re-watering conditions. Kinandang Patong showed the highest recovery ability in dry matter accumulation, root length, root surface area, and stomatal conductance after re-watering. Malagkit Pirurutong expressed the poorest recovery ability in dry matter accumulation after re-watering. These three varieties might be selected for further experiments focusing on the mechanisms of drought tolerance and recovery ability in rice.