A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
Based on the analysis to the random sear ch algorithm of LUUS, a modified random directed integer search algorithm (MRDI SA) is given for first time. And a practical example is given to show that the adva ntage of th...Based on the analysis to the random sear ch algorithm of LUUS, a modified random directed integer search algorithm (MRDI SA) is given for first time. And a practical example is given to show that the adva ntage of this kind of algorithm is the reliability can’t be infuenced by the ini tial value X (0) and the start search domain R (0) . Besides, i t can be applied to solve the higher dimensional constrained nonlinear integer p rogramming problem.展开更多
Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical...Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical situations,it is found that some jobs fail to be processed prior to the pre-specified thresholds,and they often consume extra deteriorating time for successful accomplishment. Their processing times can be characterized by a step-wise function. Such kinds of jobs are called step-deteriorating jobs. In this paper,parallel machine scheduling problem with stepdeteriorating jobs( PMSD) is considered. Due to its intractability,four different mixed integer programming( MIP) models are formulated for solving the problem under consideration. The study aims to investigate the performance of these models and find promising optimization formulation to solve the largest possible problem instances. The proposed four models are solved by commercial software CPLEX. Moreover,the near-optimal solutions can be obtained by black-box local-search solver LocalS olver with the fourth one. The computational results show that the efficiencies of different MIP models depend on the distribution intervals of deteriorating thresholds, and the performance of LocalS olver is clearly better than that of CPLEX in terms of the quality of the solutions and the computational time.展开更多
In this paper, the general exact penalty functions in integer programming were studied. The conditions which ensure the exact penalty property for the general penalty function with one penalty parameter were given and...In this paper, the general exact penalty functions in integer programming were studied. The conditions which ensure the exact penalty property for the general penalty function with one penalty parameter were given and a general penalty function with two parameters was proposed.展开更多
A quasi-filled function for nonlinear integer programming problem is given in this paper. This function contains two parameters which are easily to be chosen. Theoretical properties of the proposed quasi-filled functi...A quasi-filled function for nonlinear integer programming problem is given in this paper. This function contains two parameters which are easily to be chosen. Theoretical properties of the proposed quasi-filled function are investigated. Moreover, we also propose a new solution algorithm using this quasi-filled function to solve nonlinear integer programming problem in this paper. The examples with 2 to 6 variables are tested and computational results indicated the efficiency and reliability of the pro- posed quasi-filled function algorithm.展开更多
A definition of the quasi-filled function for nonlinear integer programming problem is given in this paper. A quasi-filled function satisfying our definition is presented. This function contains only one parameter. Th...A definition of the quasi-filled function for nonlinear integer programming problem is given in this paper. A quasi-filled function satisfying our definition is presented. This function contains only one parameter. The properties of the pro- posed quasi-filled function and the method using this quasi-filled function to solve nonlinear integer programming problem are also discussed in this paper. Numerical results indicated the efficiency and reliability of the proposed quasi-filled function algo- rithm.展开更多
The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear progr...The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear programming (LP) based branchand-bound method and adjusting the constraint conditions, an optimal set integer programming (OSIP) algorithm is then proposed for tracking multiple non-maneuvering targets in clutter. For the case of maneuvering targets, this paper introduces the OSIP algorithm into the filtering step of the interacting multiple model (IMM) algorithm resulting in the IMM based on OSIP algorithm. Extensive Monte Carlo simulations show that the presented algorithms can obtain superior estimations even in the case of high density noises.展开更多
As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packa...As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.展开更多
This paper gives a new definition of the filled function for nonlinear integer programming problem. A filled function satisfying our definition is presented. This function contains only one parameter. The properties o...This paper gives a new definition of the filled function for nonlinear integer programming problem. A filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed filled function and the method using this filled function to solve nonlinear integer programming problem are also discussed. Numerical results indicate the efficiency and reliability of the proposed filled function algorithm.展开更多
In this paper we consider modeling techniques for the mathematical puzzle KenKen. It is an interesting puzzle from modeling point of view since it has different kind of mathematical restrictions that are not trivial t...In this paper we consider modeling techniques for the mathematical puzzle KenKen. It is an interesting puzzle from modeling point of view since it has different kind of mathematical restrictions that are not trivial to express as linear constraints. We give an integer program for solving KenKen and and its implementation on modeling language AMPL. Our integer program uses an innovative way for converting product restrictions into linear constraints. It can be also used for teaching various integer programming techniques in an Operations Research course.展开更多
The maximum clique or maximum independent set of graph is a classical problem in graph theory. Com- bined with Boolean algebra and integer programming, two integer programming models for maximum clique problem, which ...The maximum clique or maximum independent set of graph is a classical problem in graph theory. Com- bined with Boolean algebra and integer programming, two integer programming models for maximum clique problem, which improve the old results were designed in this paper. Then, the programming model for maximum independent set is a corollary of the main results. These two models can be easily applied to computer algorithm and software, and suitable for graphs of any scale. Finally the models are presented as Lingo algorithms, verified and compared by sev- eral examples.展开更多
Many practical problems in commerce and industry involve finding the best way to allocate scarce resources a-mong competing activities. This paper focuses on the problem of integer programming, and describes an evolut...Many practical problems in commerce and industry involve finding the best way to allocate scarce resources a-mong competing activities. This paper focuses on the problem of integer programming, and describes an evolutionary soft a-gent model to solve it. In proposed model, agent is composed of three components: goal, environment and behavior. Experimental shows the model has the characters of parallel computing and goal driving.展开更多
This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective functio...This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective function values are smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile criteria to optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, the original random fuzzy two-level integer programming problems are reduced to deterministic ones. Through the introduction of genetic algorithms with double strings for nonlinear integer programming problems, interactive fuzzy programming to derive a satisfactory solution for the decision maker at the upper level in consideration of the cooperative relation between decision makers is presented. An illustrative numerical example demonstrates the feasibility and efficiency of the proposed method.展开更多
Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transpor...Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.展开更多
Reliability optimization plays an important role in design, operation and management of the industrial systems. System reliability can be easily enhanced by improving the reliability of unreliable components and/or by...Reliability optimization plays an important role in design, operation and management of the industrial systems. System reliability can be easily enhanced by improving the reliability of unreliable components and/or by using redundant configuration with subsystems/components in parallel. Redundancy Allocation Problem (RAP) was studied in this research. A mixed integer programming model was proposed to solve the problem, which considers simultaneously two objectives under several resource constraints. The model is only for the hierarchical series-parallel systems in which the elements of any subset of subsystems or components are connected in series or parallel and constitute a larger subsystem or total system. At the end of the study, the performance of the proposed approach was evaluated by a numerical example.展开更多
The current structure of Landmark University (LU) was induced by raising a generation of solution providers through a qualitative and life-applicable training system that focuses on values and creative knowledge by ma...The current structure of Landmark University (LU) was induced by raising a generation of solution providers through a qualitative and life-applicable training system that focuses on values and creative knowledge by making it more responsive and relevant to the modern-day demands of demonstration, industrialization and development. The challenge facing Landmark University is the question of which of its numerous projects they should invest to give maximum output with minimum input. In this paper, we maximize the Net Present Value (NPV) and maintain the net discount cash overflow of each project per period as contained and extracted as the secondary data of cash inflows of the Landmark University (LU) monthly financial statement and annual reports from 2012 to 2017 of which the documents have been regrouped as small and large scale projects as many enterprises make more use of the trial-and-error method and as such firms have been finding it difficult in allocating scarce resources in a manner that will ensure profit maximization and/or cost minimization with a simple and accurate decision making by the company through an optimization principle in selecting LU project under multi-period capital rationing using linear programming (LP) and integer programming (IP). The annual net cash flow which is the difference between the cash inflows and cash outflows during each period for the project was estimated and recorded. The discount factors were estimated at cost of capital of 10% for each cash flow per period with the corresponding NPV at 10% which revealed that the optimal decision achieves maximum returns of $110 × 102 and this assisted the project manager to select a large number of the variable projects that can maximize the profit which is far better than relying on an ad-hoc judgmental approach to project investment that could have cost 160 × 102 for the same project. Sensitivity analysis on the project parameters are also carried out to test the extent to which project selection is sensitive to changes in the parameters of the system revealed that a little reduction and or addition of reduced cost by certain amount or percentages to its corresponding coefficient in the objective function effect no changes in the shadow prices with solution values for variables (x1), (x4), (x5) and the optimal objective function.展开更多
This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in whi...This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in which the behavior of a target system is represented by linear equations in max-plus algebra. Several types of MPL equations can be reduced to a constraint satisfaction problem (CSP) for mixed integer programming. The resulting formulation is flexible and easy-to-use for project scheduling;for example, we can obtain the earliest output times, latest task-starting times, and latest input times using an MPL form. We also develop a key method for identifying critical tasks under the framework of CSP. The developed methods are validated through a numerical example.展开更多
Approaches based on integer linear programming have been recently proposed for topology optimization in wireless sensor networks. They are, however, based on over-theoretical, unrealistic models. Our aim is to show th...Approaches based on integer linear programming have been recently proposed for topology optimization in wireless sensor networks. They are, however, based on over-theoretical, unrealistic models. Our aim is to show that it is possible to accommodate realistic models for energy consumption and communication protocols into integer linear programming. We analyze the maximum lifetime broadcasting topology problem and we present realistic models that are also shown to provide efficient and practical solving tools. We present a strategy to substantially speed up the convergence of the solving process of our algorithm. This strategy introduces a practical drawback, however, in the characteristics of the optimal solutions retrieved. A method to overcome this drawback is discussed. Computational experiments are reported.展开更多
Various approaches have been developed for solving a variety of continuous global optimization problems. But up to now, less work has been devoted to solving nonlinear integer programming problems due to the inherent...Various approaches have been developed for solving a variety of continuous global optimization problems. But up to now, less work has been devoted to solving nonlinear integer programming problems due to the inherent difficulty. This paper manages to transform the general nonlinear integer programming problem into an equivalent' special continuous global minimization problem. Thus any effective global optimization algorithm can be used to solve nonlinear integer programming problems. This result will also promote the research on global optimization. We present an interval Branch-and-Bound algorithm. Numerical experiments show that this approach is efficient. (Author abstract) 11 Refs.展开更多
In robust regression we often have to decide how many are the unusualobservations, which should be removed from the sample in order to obtain better fitting for the restof the observations. Generally, we use the basic...In robust regression we often have to decide how many are the unusualobservations, which should be removed from the sample in order to obtain better fitting for the restof the observations. Generally, we use the basic principle of LTS, which is to fit the majority ofthe data, identifying as outliers those points that cause the biggest damage to the robust fit.However, in the LTS regression method the choice of default values for high break down-point affectsseriously the efficiency of the estimator. In the proposed approach we introduce penalty cost fordiscarding an outlier, consequently, the best fit for the majority of the data is obtained bydiscarding only catastrophic observations. This penalty cost is based on robust design weights andhigh break down-point residual scale taken from the LTS estimator. The robust estimation is obtainedby solving a convex quadratic mixed integer programming problem, where in the objective functionthe sum of the squared residuals and penalties for discarding observations is minimized. Theproposed mathematical programming formula is suitable for small-sample data. Moreover, we conduct asimulation study to compare other robust estimators with our approach in terms of their efficiencyand robustness.展开更多
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
文摘Based on the analysis to the random sear ch algorithm of LUUS, a modified random directed integer search algorithm (MRDI SA) is given for first time. And a practical example is given to show that the adva ntage of this kind of algorithm is the reliability can’t be infuenced by the ini tial value X (0) and the start search domain R (0) . Besides, i t can be applied to solve the higher dimensional constrained nonlinear integer p rogramming problem.
基金National Natural Science Foundation of China(No.51405403)the Fundamental Research Funds for the Central Universities,China(No.2682014BR019)the Scientific Research Program of Education Bureau of Sichuan Province,China(No.12ZB322)
文摘Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical situations,it is found that some jobs fail to be processed prior to the pre-specified thresholds,and they often consume extra deteriorating time for successful accomplishment. Their processing times can be characterized by a step-wise function. Such kinds of jobs are called step-deteriorating jobs. In this paper,parallel machine scheduling problem with stepdeteriorating jobs( PMSD) is considered. Due to its intractability,four different mixed integer programming( MIP) models are formulated for solving the problem under consideration. The study aims to investigate the performance of these models and find promising optimization formulation to solve the largest possible problem instances. The proposed four models are solved by commercial software CPLEX. Moreover,the near-optimal solutions can be obtained by black-box local-search solver LocalS olver with the fourth one. The computational results show that the efficiencies of different MIP models depend on the distribution intervals of deteriorating thresholds, and the performance of LocalS olver is clearly better than that of CPLEX in terms of the quality of the solutions and the computational time.
文摘In this paper, the general exact penalty functions in integer programming were studied. The conditions which ensure the exact penalty property for the general penalty function with one penalty parameter were given and a general penalty function with two parameters was proposed.
基金Project (Nos. 10571137 and 10271073) supported by the NationalNatural Science Foundation of China
文摘A quasi-filled function for nonlinear integer programming problem is given in this paper. This function contains two parameters which are easily to be chosen. Theoretical properties of the proposed quasi-filled function are investigated. Moreover, we also propose a new solution algorithm using this quasi-filled function to solve nonlinear integer programming problem in this paper. The examples with 2 to 6 variables are tested and computational results indicated the efficiency and reliability of the pro- posed quasi-filled function algorithm.
基金Project (No. 10271073) supported by the National Natural Science Foundation of China
文摘A definition of the quasi-filled function for nonlinear integer programming problem is given in this paper. A quasi-filled function satisfying our definition is presented. This function contains only one parameter. The properties of the pro- posed quasi-filled function and the method using this quasi-filled function to solve nonlinear integer programming problem are also discussed in this paper. Numerical results indicated the efficiency and reliability of the proposed quasi-filled function algo- rithm.
基金supported by the National Natural Science Fundation of China (61203238 61134005+5 种基金 60921001 90916024 91116016)the National Basic Research Program of China (973 Program) (2012CB8212002012CB821201)the National Science Foundation for Postdoctoral Scientists of China (2012M520140)
文摘The aim of this paper is to solve the problems of multitarget tracking in clutter. Firstly, the data association of measurement-to-target is formulated as an integer programming problem. Through using the linear programming (LP) based branchand-bound method and adjusting the constraint conditions, an optimal set integer programming (OSIP) algorithm is then proposed for tracking multiple non-maneuvering targets in clutter. For the case of maneuvering targets, this paper introduces the OSIP algorithm into the filtering step of the interacting multiple model (IMM) algorithm resulting in the IMM based on OSIP algorithm. Extensive Monte Carlo simulations show that the presented algorithms can obtain superior estimations even in the case of high density noises.
文摘As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.
文摘This paper gives a new definition of the filled function for nonlinear integer programming problem. A filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed filled function and the method using this filled function to solve nonlinear integer programming problem are also discussed. Numerical results indicate the efficiency and reliability of the proposed filled function algorithm.
文摘In this paper we consider modeling techniques for the mathematical puzzle KenKen. It is an interesting puzzle from modeling point of view since it has different kind of mathematical restrictions that are not trivial to express as linear constraints. We give an integer program for solving KenKen and and its implementation on modeling language AMPL. Our integer program uses an innovative way for converting product restrictions into linear constraints. It can be also used for teaching various integer programming techniques in an Operations Research course.
文摘The maximum clique or maximum independent set of graph is a classical problem in graph theory. Com- bined with Boolean algebra and integer programming, two integer programming models for maximum clique problem, which improve the old results were designed in this paper. Then, the programming model for maximum independent set is a corollary of the main results. These two models can be easily applied to computer algorithm and software, and suitable for graphs of any scale. Finally the models are presented as Lingo algorithms, verified and compared by sev- eral examples.
基金Supported by the National Natural Science Foundation of China(60205007),Natural Science Foundation of Guangdong Province(001264),Research Foundation of Software Technology Key Laboratory in Guangdong Province and Research Foundation of State Key Laborato
文摘Many practical problems in commerce and industry involve finding the best way to allocate scarce resources a-mong competing activities. This paper focuses on the problem of integer programming, and describes an evolutionary soft a-gent model to solve it. In proposed model, agent is composed of three components: goal, environment and behavior. Experimental shows the model has the characters of parallel computing and goal driving.
文摘This paper considers two-level integer programming problems involving random fuzzy variables with cooperative behavior of the decision makers. Considering the probabilities that the decision makers’ objective function values are smaller than or equal to target variables, fuzzy goals of the decision makers are introduced. Using the fractile criteria to optimize the target variables under the condition that the degrees of possibility with respect to the attained probabilities are greater than or equal to certain permissible levels, the original random fuzzy two-level integer programming problems are reduced to deterministic ones. Through the introduction of genetic algorithms with double strings for nonlinear integer programming problems, interactive fuzzy programming to derive a satisfactory solution for the decision maker at the upper level in consideration of the cooperative relation between decision makers is presented. An illustrative numerical example demonstrates the feasibility and efficiency of the proposed method.
文摘Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.
文摘Reliability optimization plays an important role in design, operation and management of the industrial systems. System reliability can be easily enhanced by improving the reliability of unreliable components and/or by using redundant configuration with subsystems/components in parallel. Redundancy Allocation Problem (RAP) was studied in this research. A mixed integer programming model was proposed to solve the problem, which considers simultaneously two objectives under several resource constraints. The model is only for the hierarchical series-parallel systems in which the elements of any subset of subsystems or components are connected in series or parallel and constitute a larger subsystem or total system. At the end of the study, the performance of the proposed approach was evaluated by a numerical example.
文摘The current structure of Landmark University (LU) was induced by raising a generation of solution providers through a qualitative and life-applicable training system that focuses on values and creative knowledge by making it more responsive and relevant to the modern-day demands of demonstration, industrialization and development. The challenge facing Landmark University is the question of which of its numerous projects they should invest to give maximum output with minimum input. In this paper, we maximize the Net Present Value (NPV) and maintain the net discount cash overflow of each project per period as contained and extracted as the secondary data of cash inflows of the Landmark University (LU) monthly financial statement and annual reports from 2012 to 2017 of which the documents have been regrouped as small and large scale projects as many enterprises make more use of the trial-and-error method and as such firms have been finding it difficult in allocating scarce resources in a manner that will ensure profit maximization and/or cost minimization with a simple and accurate decision making by the company through an optimization principle in selecting LU project under multi-period capital rationing using linear programming (LP) and integer programming (IP). The annual net cash flow which is the difference between the cash inflows and cash outflows during each period for the project was estimated and recorded. The discount factors were estimated at cost of capital of 10% for each cash flow per period with the corresponding NPV at 10% which revealed that the optimal decision achieves maximum returns of $110 × 102 and this assisted the project manager to select a large number of the variable projects that can maximize the profit which is far better than relying on an ad-hoc judgmental approach to project investment that could have cost 160 × 102 for the same project. Sensitivity analysis on the project parameters are also carried out to test the extent to which project selection is sensitive to changes in the parameters of the system revealed that a little reduction and or addition of reduced cost by certain amount or percentages to its corresponding coefficient in the objective function effect no changes in the shadow prices with solution values for variables (x1), (x4), (x5) and the optimal objective function.
文摘This research develops a solution method for project scheduling represented by a max-plus-linear (MPL) form. Max-plus-linear representation is an approach to model and analyze a class of discrete-event systems, in which the behavior of a target system is represented by linear equations in max-plus algebra. Several types of MPL equations can be reduced to a constraint satisfaction problem (CSP) for mixed integer programming. The resulting formulation is flexible and easy-to-use for project scheduling;for example, we can obtain the earliest output times, latest task-starting times, and latest input times using an MPL form. We also develop a key method for identifying critical tasks under the framework of CSP. The developed methods are validated through a numerical example.
文摘Approaches based on integer linear programming have been recently proposed for topology optimization in wireless sensor networks. They are, however, based on over-theoretical, unrealistic models. Our aim is to show that it is possible to accommodate realistic models for energy consumption and communication protocols into integer linear programming. We analyze the maximum lifetime broadcasting topology problem and we present realistic models that are also shown to provide efficient and practical solving tools. We present a strategy to substantially speed up the convergence of the solving process of our algorithm. This strategy introduces a practical drawback, however, in the characteristics of the optimal solutions retrieved. A method to overcome this drawback is discussed. Computational experiments are reported.
文摘Various approaches have been developed for solving a variety of continuous global optimization problems. But up to now, less work has been devoted to solving nonlinear integer programming problems due to the inherent difficulty. This paper manages to transform the general nonlinear integer programming problem into an equivalent' special continuous global minimization problem. Thus any effective global optimization algorithm can be used to solve nonlinear integer programming problems. This result will also promote the research on global optimization. We present an interval Branch-and-Bound algorithm. Numerical experiments show that this approach is efficient. (Author abstract) 11 Refs.
文摘In robust regression we often have to decide how many are the unusualobservations, which should be removed from the sample in order to obtain better fitting for the restof the observations. Generally, we use the basic principle of LTS, which is to fit the majority ofthe data, identifying as outliers those points that cause the biggest damage to the robust fit.However, in the LTS regression method the choice of default values for high break down-point affectsseriously the efficiency of the estimator. In the proposed approach we introduce penalty cost fordiscarding an outlier, consequently, the best fit for the majority of the data is obtained bydiscarding only catastrophic observations. This penalty cost is based on robust design weights andhigh break down-point residual scale taken from the LTS estimator. The robust estimation is obtainedby solving a convex quadratic mixed integer programming problem, where in the objective functionthe sum of the squared residuals and penalties for discarding observations is minimized. Theproposed mathematical programming formula is suitable for small-sample data. Moreover, we conduct asimulation study to compare other robust estimators with our approach in terms of their efficiencyand robustness.