Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in re...Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.展开更多
Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesi...Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nan...The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.展开更多
The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,e...The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.展开更多
V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated...V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.展开更多
Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results in...Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results indicated that nano-Al and micro-Al were compactly wrapped by amorphous iron-oxide nanoparticles (about 20 nm), respectively. The iron-oxide showed the mass ratio of Fe to O as similar as that in Fe2O3. Thermal analyses were performed on two nanocomposites, and four simple mixtures (nano-Al+xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al+xero-Fe2O3, and micro-Al+micro-Fe2O3) were also analyzed. There were not apparent distinctions in the reactions of thermites fueled by nano-Al. For thermites fueled by micro-Al, the DSC peak temperatures of micro-Al/Xero-Fe2O3 were advanced by 68.1 ℃ and 76.8 ℃ compared with micro-Al+xero-Fe2O3 and micro-Al+micro-Fe2O3, respectively. Four thermites, namely, nano-Al/xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al/xero-Fe2O3, and micro-Al+micro-Fe2O3, were heated from ambient temperature to 1020 ℃, during which the products at 660 ℃ and 1020 ℃ were collected and analyzed by XRD. Crystals of Fe, FeAl2O4, Fe3O4,α-Fe2O3, Al,γ-Fe2O3, Al2.667O4, FeO andα-Al2O3 were indexed in XRD patterns. For each thermite, according to the specific products, the possible equations were given. Based on the principle of the minimum free energy, the most reasonable equations were inferred from the possible reactions.展开更多
The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. T...The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.展开更多
The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were...The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.展开更多
The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the r...The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.展开更多
The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geo...The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.展开更多
Bi2MoO6,a typical Bi-based photocatalyst,has received increasing interests and been widely applied in various fields.However,the visible light photocatalytic activity of Bi2MoO6 is still restricted by some obstacles,s...Bi2MoO6,a typical Bi-based photocatalyst,has received increasing interests and been widely applied in various fields.However,the visible light photocatalytic activity of Bi2MoO6 is still restricted by some obstacles,such as limited photo-response and low charge separation efficiency.In this work,we developed a facile method to introduce artificial oxygen vacancy into Bi2MoO6 microspheres,which could effectively address these problems and realize highly efficient visible light photocatalysis.The experimental and theoretical methods were combined to explore the effects of oxygen vacancy on the electronic structure,photocatalytic activity and the reaction mechanism toward NO removal.The results showed that the addition of NaBH4 during catalyst preparation induced the formation of oxygen vacancy in Bi2MoO6,which plays a significant role in extending the visible light absorption of Bi2MoO6.The visible light photocatalytic activity of Bi2MoO6 with oxygen vacancy was obviously enhanced with a NO removal ratio of 43.5%,in contrast to that of 25.0%with the pristine Bi2MoO6.This can be attributed to the oxygen vacancy that creates a defect energy level in the band gap of Bi2MoO6,thus facilitating the charge separation and transfer processes.Hence,more reactive radicals were generated and participated in the photocatalytic NO oxidation reaction.The in situ FT-IR was used to dynamically monitor the photocatalytic NO oxidation process.The reaction intermediates were observed and the adsorption-reaction mechanism was proposed.It was found that the reaction mechanism was unchanged by introducing the oxygen vacancy in Bi2MoO6.This work could provide new insights into the understanding of the oxygen vacancy in photocatalysis and gas-phase photocatalytic reaction mechanism.展开更多
The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show ...The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show that the addition reaction of G with U under the conditions mainly involves the reactions of U with protonated glyoxal (p-G), protonated 2,2-dihy- droxyacetaldehyde (p-G 1) and protonated bis-hemdiol (p-G2) to form two important carbocation reactive intermediates of C-p-UG and C-p-UG1, and two important hydroxyl compounds of UG and UG1. These compounds play important roles in the formation of UG resin. According to the result of quantum chemical calculation, UG resin was synthesized successfully under weak acid conditions. The UG resin was characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), ultraviolet and visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT1R) and nuclear magnetic resonance spectroscopy (13CNMR and 1HNMR). These instrumental analytical results agree with each other and further confirm the addition reaction pathway of glyoxal with urea proposed by quantum chemical calculation.展开更多
The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + ...The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + + G^** level. The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies, and the zeropoint energies(ZPE) of all the species were calculated. The single-point energies along the MEP were further refined at the QCISD(T)/6-311 + + G^* * level. It was found that the mechanisms of the HNCS + NH(X^3∑) reaction involve two channels producing the HNC + HNS and the N2H2 + CS products. Channel 1 plays a dominant role and the HNC + HNS are the main preduets. The reaction is exothermie.展开更多
This article is based on the experimental data on reaction of FCC naphtha in the presence of acid catalysts. The data published in the literature were reprocessed and compared with experimental data and the relationsh...This article is based on the experimental data on reaction of FCC naphtha in the presence of acid catalysts. The data published in the literature were reprocessed and compared with experimental data and the relationship of hydrogen and methane contained in the dry gas with the conversion rate was identified.The similarity between the route for cracking of olefin enriched FCC gasoline and the route for reaction of individual hydrocarbons was deduced, while the route for formation of ethylene in dry gas was also proposed to identify the relationship between the reaction path for formation of ethylene and the conversion rate.展开更多
Heterostructured photocatalysts provide an effective way to achieve enhanced photocatalytic performances through efficient charge separation.Although both wide-and narrow-band-gap photocatalysts have been widely inves...Heterostructured photocatalysts provide an effective way to achieve enhanced photocatalytic performances through efficient charge separation.Although both wide-and narrow-band-gap photocatalysts have been widely investigated,the charge separation and transfer mechanism at the contacting interface of the two has not been fully revealed.Here,a novel SrTiO3/BiOI(STB)heterostructured photocatalyst was successfully fabricated by using a facile method.The heterostructure in the photocatalyst extends the photoabsorption to the visible light range,and thus,high photocatalytic NO removal performance can be achieved under visible light irradiation.A combination of experimental and theoretical evidences indicated that the photogenerated electrons from the BiOI semiconductor can directly transfer to the SrTiO3 surface through a preformed electron delivery channel.Enhanced electron transfer was expected between the SrTiO3 and BiOI surfaces under light irradiation,and leads to efficient ROS generation and thus a high NO conversion rate.Moreover,in situ diffused reflectance infrared Fourier transform spectroscopy revealed that STB can better inhibit the accumulation of the toxic intermediate NO2 and catalyze the NO oxidation more effectively.This work presents a new insight into the mechanism of the interfacial charge separation in heterostructures and provides a simple strategy to promote the photocatalytic technology for efficient and safe air purification.展开更多
The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaO...The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaOH to Zn2SiO4 of 16:1,reaction temperature of 550°C,and reaction time of 2.5 h.In order to ascertain the phases transformation and reaction processes of zinc oxide and silica,the XRD phase analysis was used to analyze the phases of these specimens roasted at different temperatures.The final phases of the specimen roasted at 600°C were Na2ZnO2,Na4SiO4,Na2ZnSiO4 and NaOH.The reaction kinetic equation of roasting was determined by the shrinking unreacted core model.Aiming to investigate the reaction mechanism,two control models of reaction rate were applied:chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the diffusion through the product layer model described the reaction process well.The apparent activation energy of the roasting was 19.77 kJ/mol.展开更多
The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction ...The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction sintering method. After sintering, the Al–AlO–MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen Mwas composed of MgO and MgAlO. Compared with specimen M, specimens Mand Mpossessed MgAlON, and its production increased with increasing aluminum addition. Under an Natmosphere, MgO, AlO, and Al in the matrix of specimens Mand Mreacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al–AlO–MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an Natmosphere, the partial pressure of oxygen is quite low; thus, when the Al–AlO–MgO composites were soaked at 580°C for an extended period, aluminum metal was transformed into AlN. With increasing temperature, AlOdiffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with AlOto form MgAlO. When the temperature was greater than(1640 ± 10)°C, AlN diffused into AlOand formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and Mg AlOat high temperatures because of their similar spinel structures.展开更多
Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of ph...Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of photosystem II to generate dioxygen,protons,and electrons.In artificial energy schemes,water oxidation is one of the half reactions of water splitting,which is an appealing strategy for energy conversion via photocatalytic,electrocatalytic,or photoelectrocatalytic processes.Because it is thermodynamically unfavorable and kinetically slow,water oxidation is the bottleneck for achieving large-scale water splitting.Thus,developing highly efficient water oxidation catalysts has attracted the interests of researchers in the past decades.The formation of O-O bonds is typically the rate-determining step of the water oxidation catalytic cycle.Therefore,better understanding this key step is critical for the rational design of more efficient catalysts.This review focuses on elucidating the evolution of metal-oxygen species during transition metal-catalyzed water oxidation,and more importantly,on discussing the feasible O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts.展开更多
The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 t...The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 to 910 mA·h/g at 500 mA/g during 550 consecutive discharge/charge cycles,and delivers an ultrahigh capacity of 1276 mA·h/g at 100 mA/g,which is much greater than the theoretical capacity of either ZnMn2O4 or Mn3O4 electrode.To investigate the underlying mechanism of this phenomenon,cyclic voltammetry and differential capacity analysis were applied,both of which reveal the emergence and the growth of new reversible redox reactions upon charge/discharge cycling.The new reversible conversions are probably the results of an activation process of the electrode material during the cycling process,leading to the climbing charge storage.However,the capacity exceeding the theoretical value indicates that there are still other factors contributing to the increasing capacity.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (FRF-EYIT-23-07)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)technology,which enables carbon capture storage and resource utilization by reducing CO_(2) to valuable chemicals or fuels,has become a global research hotspot in recent decades.Among the many products of CO_(2)RR(carbon monoxide,acids,aldehydes and alcohols,olefins,etc.),alcohols(methanol,ethanol,propanol,etc.)have a higher market value and energy density,but it is also more difficult to produce.Copper is known to be effective in catalyzing CO_(2) to high valueadded alcohols,but with poor selectivity.The progress of Cu-based catalysts for the selective generation of alcohols,including copper oxides,bimetals,single atoms and composites is reviewed.Meanwhile,to improve Cu-based catalyst activity and modulate product selectivity,the modulation strategies are straighten out,including morphological regulation,crystalline surface,oxidation state,as well as elemental doping and defect engineering.Based on the research progress of electrocatalytic CO_(2) reduction for alcohol production on Cu-based materials,the reaction pathways and the key intermediates of the electrocatalytic CO_(2)RR to methanol,ethanol and propanol are summarized.Finally,the problems of traditional electrocatalytic CO_(2)RR are introduced,and the future applications of machine learning and theoretical calculations are prospected.An in-depth discussion and a comprehensive review of the reaction mechanism,catalyst types and regulation strategies were carried out with a view to promoting the development of electrocatalytic CO_(2)RR to alcohols.
基金the Science and Technology Planning Project of Guangdong Province(2016B090934002)Guangdong Provincial Natural Science Foundation(2023A1515011640)for financial support.
文摘Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.
基金funded by the Key Projects of Xinjiang Production and Construction Corps(2022AB007)the Key Projects of innovation team of Xinjiang eighth division Construction Corps 2023TD04)Liaoning Innovation Capability Fund(2021-NLTS-12-02).
文摘The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.
基金supported by the National Natural Science Foundation of China(51306034)Key Research&Development Projects of Jiangsu Province(BE2015677)the National Basic Research Program of China(2013CB228505)~~
文摘V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.
基金Project(51206081)supported by the National Natural Science Foundation of China
文摘Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results indicated that nano-Al and micro-Al were compactly wrapped by amorphous iron-oxide nanoparticles (about 20 nm), respectively. The iron-oxide showed the mass ratio of Fe to O as similar as that in Fe2O3. Thermal analyses were performed on two nanocomposites, and four simple mixtures (nano-Al+xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al+xero-Fe2O3, and micro-Al+micro-Fe2O3) were also analyzed. There were not apparent distinctions in the reactions of thermites fueled by nano-Al. For thermites fueled by micro-Al, the DSC peak temperatures of micro-Al/Xero-Fe2O3 were advanced by 68.1 ℃ and 76.8 ℃ compared with micro-Al+xero-Fe2O3 and micro-Al+micro-Fe2O3, respectively. Four thermites, namely, nano-Al/xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al/xero-Fe2O3, and micro-Al+micro-Fe2O3, were heated from ambient temperature to 1020 ℃, during which the products at 660 ℃ and 1020 ℃ were collected and analyzed by XRD. Crystals of Fe, FeAl2O4, Fe3O4,α-Fe2O3, Al,γ-Fe2O3, Al2.667O4, FeO andα-Al2O3 were indexed in XRD patterns. For each thermite, according to the specific products, the possible equations were given. Based on the principle of the minimum free energy, the most reasonable equations were inferred from the possible reactions.
基金Project(51304245)supported by the National Natural Science Foundation of ChinaProject(2014T70691)supported by the Postdoctoral Science Foundation of China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject supported by the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.
基金Project(2006AA068128)supported by the Hi-tech Research and Development Program of China
文摘The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.
文摘The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.
文摘The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.
基金supported by the National Natural Science Foundation of China(21501016,51501024,51871037 and 21822601)the Fundamental Research Funds for the Central Universities(2018CDQYCL0027)~~
文摘Bi2MoO6,a typical Bi-based photocatalyst,has received increasing interests and been widely applied in various fields.However,the visible light photocatalytic activity of Bi2MoO6 is still restricted by some obstacles,such as limited photo-response and low charge separation efficiency.In this work,we developed a facile method to introduce artificial oxygen vacancy into Bi2MoO6 microspheres,which could effectively address these problems and realize highly efficient visible light photocatalysis.The experimental and theoretical methods were combined to explore the effects of oxygen vacancy on the electronic structure,photocatalytic activity and the reaction mechanism toward NO removal.The results showed that the addition of NaBH4 during catalyst preparation induced the formation of oxygen vacancy in Bi2MoO6,which plays a significant role in extending the visible light absorption of Bi2MoO6.The visible light photocatalytic activity of Bi2MoO6 with oxygen vacancy was obviously enhanced with a NO removal ratio of 43.5%,in contrast to that of 25.0%with the pristine Bi2MoO6.This can be attributed to the oxygen vacancy that creates a defect energy level in the band gap of Bi2MoO6,thus facilitating the charge separation and transfer processes.Hence,more reactive radicals were generated and participated in the photocatalytic NO oxidation reaction.The in situ FT-IR was used to dynamically monitor the photocatalytic NO oxidation process.The reaction intermediates were observed and the adsorption-reaction mechanism was proposed.It was found that the reaction mechanism was unchanged by introducing the oxygen vacancy in Bi2MoO6.This work could provide new insights into the understanding of the oxygen vacancy in photocatalysis and gas-phase photocatalytic reaction mechanism.
基金Supported by the Key Program of the National Natural Science Foundation of China(No.30930074)National Natural Science Foundation of China(No.31260160)
文摘The reaction mechanism of glyoxal (G) with urea (U) under weak acid condition was theoretically investigated at PW91/DNP/COSMO of quantum chemistry using density functional theory (DFT) method. The results show that the addition reaction of G with U under the conditions mainly involves the reactions of U with protonated glyoxal (p-G), protonated 2,2-dihy- droxyacetaldehyde (p-G 1) and protonated bis-hemdiol (p-G2) to form two important carbocation reactive intermediates of C-p-UG and C-p-UG1, and two important hydroxyl compounds of UG and UG1. These compounds play important roles in the formation of UG resin. According to the result of quantum chemical calculation, UG resin was synthesized successfully under weak acid conditions. The UG resin was characterized by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), ultraviolet and visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT1R) and nuclear magnetic resonance spectroscopy (13CNMR and 1HNMR). These instrumental analytical results agree with each other and further confirm the addition reaction pathway of glyoxal with urea proposed by quantum chemical calculation.
基金Supported by the Natural Science Foundation of Hainan Province(No. 60505) and the Doctoral Research Fund of Hainan Nor-mal University.
文摘The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + + G^** level. The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies, and the zeropoint energies(ZPE) of all the species were calculated. The single-point energies along the MEP were further refined at the QCISD(T)/6-311 + + G^* * level. It was found that the mechanisms of the HNCS + NH(X^3∑) reaction involve two channels producing the HNC + HNS and the N2H2 + CS products. Channel 1 plays a dominant role and the HNC + HNS are the main preduets. The reaction is exothermie.
文摘This article is based on the experimental data on reaction of FCC naphtha in the presence of acid catalysts. The data published in the literature were reprocessed and compared with experimental data and the relationship of hydrogen and methane contained in the dry gas with the conversion rate was identified.The similarity between the route for cracking of olefin enriched FCC gasoline and the route for reaction of individual hydrocarbons was deduced, while the route for formation of ethylene in dry gas was also proposed to identify the relationship between the reaction path for formation of ethylene and the conversion rate.
基金supported by the National Natural Science Foundation of China(21822601,21501016,21777011)the National R&D Program of China(2016YFC02047)+1 种基金the Innovative Research Team of Chongqing(CXTDG201602014)the Natural Science Foundation of Chongqing(cstc2017jcyj BX0052)~~
文摘Heterostructured photocatalysts provide an effective way to achieve enhanced photocatalytic performances through efficient charge separation.Although both wide-and narrow-band-gap photocatalysts have been widely investigated,the charge separation and transfer mechanism at the contacting interface of the two has not been fully revealed.Here,a novel SrTiO3/BiOI(STB)heterostructured photocatalyst was successfully fabricated by using a facile method.The heterostructure in the photocatalyst extends the photoabsorption to the visible light range,and thus,high photocatalytic NO removal performance can be achieved under visible light irradiation.A combination of experimental and theoretical evidences indicated that the photogenerated electrons from the BiOI semiconductor can directly transfer to the SrTiO3 surface through a preformed electron delivery channel.Enhanced electron transfer was expected between the SrTiO3 and BiOI surfaces under light irradiation,and leads to efficient ROS generation and thus a high NO conversion rate.Moreover,in situ diffused reflectance infrared Fourier transform spectroscopy revealed that STB can better inhibit the accumulation of the toxic intermediate NO2 and catalyze the NO oxidation more effectively.This work presents a new insight into the mechanism of the interfacial charge separation in heterostructures and provides a simple strategy to promote the photocatalytic technology for efficient and safe air purification.
基金Projects(51774070,51204054)supported by the National Natural Science Foundation of ChinaProject(150204009)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2014CB643405)supported by the National Basic Research Program of China
文摘The reaction kinetics of roasting zinc silicate using NaOH was investigated.The orthogonal test was employed to optimize the reaction conditions and the optimized reaction conditions were as follows:molar ratio of NaOH to Zn2SiO4 of 16:1,reaction temperature of 550°C,and reaction time of 2.5 h.In order to ascertain the phases transformation and reaction processes of zinc oxide and silica,the XRD phase analysis was used to analyze the phases of these specimens roasted at different temperatures.The final phases of the specimen roasted at 600°C were Na2ZnO2,Na4SiO4,Na2ZnSiO4 and NaOH.The reaction kinetic equation of roasting was determined by the shrinking unreacted core model.Aiming to investigate the reaction mechanism,two control models of reaction rate were applied:chemical reaction at the particle surface and diffusion through the product layer.The results indicated that the diffusion through the product layer model described the reaction process well.The apparent activation energy of the roasting was 19.77 kJ/mol.
文摘The Al–AlO–MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M, M, and M, respectively, were prepared at 1700°C for 5 h under a flowing Natmosphere using the reaction sintering method. After sintering, the Al–AlO–MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen Mwas composed of MgO and MgAlO. Compared with specimen M, specimens Mand Mpossessed MgAlON, and its production increased with increasing aluminum addition. Under an Natmosphere, MgO, AlO, and Al in the matrix of specimens Mand Mreacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al–AlO–MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an Natmosphere, the partial pressure of oxygen is quite low; thus, when the Al–AlO–MgO composites were soaked at 580°C for an extended period, aluminum metal was transformed into AlN. With increasing temperature, AlOdiffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with AlOto form MgAlO. When the temperature was greater than(1640 ± 10)°C, AlN diffused into AlOand formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and Mg AlOat high temperatures because of their similar spinel structures.
文摘Water oxidation is one of the most important reactions in natural and artificial energy conversion schemes.In nature,solar energy is converted to chemical energy via water oxidation at the oxygen-evolving center of photosystem II to generate dioxygen,protons,and electrons.In artificial energy schemes,water oxidation is one of the half reactions of water splitting,which is an appealing strategy for energy conversion via photocatalytic,electrocatalytic,or photoelectrocatalytic processes.Because it is thermodynamically unfavorable and kinetically slow,water oxidation is the bottleneck for achieving large-scale water splitting.Thus,developing highly efficient water oxidation catalysts has attracted the interests of researchers in the past decades.The formation of O-O bonds is typically the rate-determining step of the water oxidation catalytic cycle.Therefore,better understanding this key step is critical for the rational design of more efficient catalysts.This review focuses on elucidating the evolution of metal-oxygen species during transition metal-catalyzed water oxidation,and more importantly,on discussing the feasible O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts.
基金Ting-ting FENG acknowledges the financial support from Professor Paul V.BRAUN at Department of Materials Science and Engineering,University of Illinois at Urbana-Champaign,the support from Chinese Scholarship Council during her visit to University of Illinois at Urbana-Champaign,partial financial supports from Department of Science and Technology of Sichuan Province,China(2019YFH0002,2019YFG0222 and 2019YFG0526).The research was partly carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities,University of Illinois at Urbana-Champaign.
文摘The hierarchical ZnMn2O4/Mn3O4 composite sub-microrods were synthesized via a water-in-oil microemulsion method followed by calcination.The ZnMn2O4/Mn3O4 electrode displays an intriguing capacity increasing from 440 to 910 mA·h/g at 500 mA/g during 550 consecutive discharge/charge cycles,and delivers an ultrahigh capacity of 1276 mA·h/g at 100 mA/g,which is much greater than the theoretical capacity of either ZnMn2O4 or Mn3O4 electrode.To investigate the underlying mechanism of this phenomenon,cyclic voltammetry and differential capacity analysis were applied,both of which reveal the emergence and the growth of new reversible redox reactions upon charge/discharge cycling.The new reversible conversions are probably the results of an activation process of the electrode material during the cycling process,leading to the climbing charge storage.However,the capacity exceeding the theoretical value indicates that there are still other factors contributing to the increasing capacity.