期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
A CLASS OF NONLINEAR SINGULARLY PERTURBED PROBLEMS FOR REACTION DIFFUSION EQUATIONS 被引量:10
1
作者 莫嘉琪 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期377-385,共9页
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for... A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions. 展开更多
关键词 NONLINEAR reaction diffusion equation singular perturbation
下载PDF
THE ASYMPTOTIC BEHAVIOR OF SOLUTION FOR THE SINGULARLY PERTURBED INITIAL BOUNDARY VALUE PROBLEMS OF THE REACTION DIFFUSION EQUATIONS IN A PART OF DOMAIN 被引量:1
2
作者 LIU Qi-lin(刘其林) +1 位作者 MO Jia-qi(莫嘉琪) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第10期1192-1197,共6页
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i... A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied. 展开更多
关键词 singular perturbation reaction diffusion equation initial boundary value problem
下载PDF
Nonlinear Singularly Perturbed Problems for Reaction Diffusion Equations with Two Parameters and Boundary Perturbation
3
作者 CHE Guo-feng CHEN Hai-bo 《Journal of Donghua University(English Edition)》 EI CAS 2016年第6期888-893,共6页
A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with two parameters and boundary perturbation were considered.Under suitable conditions,the existence,uniquene... A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with two parameters and boundary perturbation were considered.Under suitable conditions,the existence,uniqueness and asymptotic behavior of solutions for the initial boundary value problems were studied.An example was also given to illustrate our main results. 展开更多
关键词 EXISTENCE asymptotic behavior reaction diffusion equation singular perturbation boundary perturbation
下载PDF
ASYMPTOTIC BEHAVIOR OF SOLUTION FOR A CLASS OF REACTION DIFFUSION EQUATIONS
4
作者 MoJiaqi LinWantao ZhuJiang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2004年第4期367-373,共7页
A class of initial boundary value problems for the reaction diffusion equations are considered.The asymptotic behavior of solution for the problem is obtained using the theory of differential inequality.
关键词 reaction diffusion equation asymptotic behavior differential inequality.
下载PDF
Exponential Time Differencing Method for a Reaction-Diffusion System with Free Boundary
5
作者 Shuang Liu Xinfeng Liu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期354-371,共18页
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet... For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples. 展开更多
关键词 reaction diffusion equations Free boundary Integrating factor method Level set method
下载PDF
Lower Bounds of Blow Up Time for a Class of Slow Reaction Diffusion Equations with Inner Absorption Terms 被引量:1
6
作者 XUE Yingzhen 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第5期373-378,共6页
In this paper,a class of slow reaction-diffusion equations with nonlocal source and inner absorption terms are studied.By using the technique of improved differential inequality,the lower bounds of blow up time for th... In this paper,a class of slow reaction-diffusion equations with nonlocal source and inner absorption terms are studied.By using the technique of improved differential inequality,the lower bounds of blow up time for the system under either homogeneous Dirichlet or nonhomogeneous Neumann boundary conditions are obtained. 展开更多
关键词 slow reaction diffusion equations inner absorption terms lower bounds of blow up time
原文传递
LAGRANGE STABILITY IN MEAN SQUARE OF STOCHASTIC REACTION DIFFUSION EQUATIONS 被引量:1
7
作者 Luo Qi (Dept. of Inform, and Communication, Nanjing University of Information Science and Technology, Nanjing 210044) Bao Jundong (College, of Math. Science, Inner Mongolia Normal University, Huhehaott 010022) Zhang Yutian (College of Science, Wuhan University of Sci. and Technology, Wuhan 430081) 《Annals of Differential Equations》 2006年第3期330-332,共3页
This work is devoted to the discussion of stochastic reaction diffusion equations and some new theorems on Lagrange stability in mean square of the solution are established via Lyapunov method which is nothing to be d... This work is devoted to the discussion of stochastic reaction diffusion equations and some new theorems on Lagrange stability in mean square of the solution are established via Lyapunov method which is nothing to be done in the past. 展开更多
关键词 stochastic reaction diffusion equations lagrange stability mean square Lyapunov function
原文传递
EVANS FUNCTIONS AND INSTABILITY OF A STANDING PULSE SOLUTION OF A NONLINEAR SYSTEM OF REACTION DIFFUSION EQUATIONS
8
作者 Linghai Zhang 《Annals of Applied Mathematics》 2016年第1期79-101,共23页
In this paper, we consider a nonlinear system of reaction diffusion equa- tions arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients... In this paper, we consider a nonlinear system of reaction diffusion equa- tions arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients. The main purpose is to couple together linearized stability criterion (the equivalence of the nonlinear stability, the linear stability and the spectral sta- bility of the standing pulse solutions) and Evans functions to accomplish the existence and instability of standing pulse solutions of the nonlinear system of reaction diffusion equations and the nonlinear scalar reaction diffusion equa- tions. The Evans functions for the standing pulse solutions are constructed explicitly. 展开更多
关键词 nonlinear system of reaction diffusion equations standing pulse solutions existence INSTABILITY linearized stability criterion Evans func- tions
原文传递
GENERALIZED SOLUTION OF SINGULARLY PERTURBED PROBLEMS FOR REACTION DIFFUSION EQUATIONS 被引量:4
9
作者 Yao Jingsun Mo Jiaqi 《Annals of Differential Equations》 2006年第1期81-86,共6页
The singularly perturbed initial boundary value problem for reaction diffusion equation is considered. Under suitable conditions the existence, uniqueness and asymptotic behavior of the generalized solution for the pr... The singularly perturbed initial boundary value problem for reaction diffusion equation is considered. Under suitable conditions the existence, uniqueness and asymptotic behavior of the generalized solution for the problems are studied. 展开更多
关键词 reaction diffusion equation singular perturbation generalized solution
原文传递
SINGULAR PERTURBATION FOR REACTION DIFFUSION EQUATIONS 被引量:1
10
作者 MoJiaqi WangHui ZhuJiang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2003年第3期251-257,共7页
The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution... The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution for initial boundary value problems are studied,where the reduced problems possess two intersecting solutions. 展开更多
关键词 NONLINEAR reaction diffusion equation singular perturbation
下载PDF
Reaction Diffusion Equations for Nonlinear Boundary Conditions
11
作者 CHEN Lihua DU Zengji MO Jiaqi 《Wuhan University Journal of Natural Sciences》 CAS 2013年第3期237-240,共4页
A class of singularly perturbed initial boundary value problems of reaction diffusion equations for nonlinear boundary conditions is considered.Under suitable conditions,by using the theory of differential inequalitie... A class of singularly perturbed initial boundary value problems of reaction diffusion equations for nonlinear boundary conditions is considered.Under suitable conditions,by using the theory of differential inequalities,the existence and asymptotic behavior of solution for initial boundary value problem are studied.Moreover,the obtained solution indicates that there are initial and boundary layers,and the thickness of the initial layer is less than that of the boundary layer. 展开更多
关键词 NONLINEAR two parameters singular perturbation reaction diffusion equation
原文传递
Threshold Solutions for Nonlocal Reaction Diffusion Equations
12
作者 He Zhang Yong Li Xue Yang 《Communications in Mathematical Research》 CSCD 2022年第3期388-420,共33页
We study the Cauchy problem for nonlocal reaction diffusion equations with bistable nonlinearity in 1D spatial domain and investigate the asymptotic behaviors of solutions with a one-parameter family of monotonically ... We study the Cauchy problem for nonlocal reaction diffusion equations with bistable nonlinearity in 1D spatial domain and investigate the asymptotic behaviors of solutions with a one-parameter family of monotonically increasing and compactly supported initial data.We show that for small values of the parameter the corresponding solutions decay to O,while for large values the related solutions converge to 1 uniformly on compacts.Moreover,we prove that the transition from extinction(converging to O)to propagation(converging to 1)is sharp.Numerical results are provided to verify the theoretical results. 展开更多
关键词 Nonlocal reaction diffusion equation asymptotic behaviors threshold solution sharp transition.
原文传递
Traveling Wave Solution for Two Kinds of Reaction-Diffusion Equations
13
作者 Jian-lan Hu Han-lin Zhang 《Advances in Manufacturing》 2000年第2期108-111,共4页
The generialized Kuramoto Sivashinski equation and Fisher equation in chemical reaction diffusion was studied in this paper. By introducing a new method, the anthors obtained the exact traveling wave solution for th... The generialized Kuramoto Sivashinski equation and Fisher equation in chemical reaction diffusion was studied in this paper. By introducing a new method, the anthors obtained the exact traveling wave solution for the two types of reaction diffusion equations. 展开更多
关键词 traveling wave solution reaction diffusion equation Kuramoto Sivashinski equation Fisher equation
下载PDF
Global existence and blow up of solutions for two classes of reaction diffusion systems with two nonlinear source terms in bounded domain
14
作者 XU Run-zhang WANG Xing-chang +2 位作者 CHEN Shao-hua LIU Yu YANG Yan-bing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第4期389-408,共20页
In this paper we deal with the initial boundary value problem for two classes of reaction diffusion systems with two source terms in bounded domain. Under some assumptions on the exponents and the initial data, applyi... In this paper we deal with the initial boundary value problem for two classes of reaction diffusion systems with two source terms in bounded domain. Under some assumptions on the exponents and the initial data, applying the comparison principle, the maximum prin- ciple and the supersolution-subsolution method, we prove the global existence and blow up of solutions. We also establish some upper blow up rates. 展开更多
关键词 reaction diffusion equations global existence blow up blow up rate.
下载PDF
THE POINTWISE ESTIMATES OF SOLUTIONS FOR A NONLINEAR CONVECTION DIFFUSION REACTION EQUATION 被引量:1
15
作者 刘国威 《Acta Mathematica Scientia》 SCIE CSCD 2017年第1期79-96,共18页
This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the op... This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the optimal Lp,1≤ p ≤ +∞,convergence rate of solutions for small initial data.Then we establish the local existence of solutions,the blow up criterion and the sufficient condition to ensure the nonnegativity of solutions for large initial data.Our approach is based on the detailed analysis of the Green function of the linearized equation and some energy estimates. 展开更多
关键词 convection diffusion reaction equation pointwise estimate Green function energy method
下载PDF
A CLASS OF SINGULARLY PERTURBED INITIAL BOUNDARY PROBLEM FOR REACTION DIFFUSION EQUATION 被引量:1
16
作者 Xie Feng (Dept. of Appl. Math. , Shanghai Jiaotong University, China) 《Analysis in Theory and Applications》 2003年第1期14-19,共6页
The singularly perturbed initial boundary value problem for a class of reaction diffusion equation is considered. Under appropriate conditions, the existence-uniqueness and the asymptotic behavior of the solution are ... The singularly perturbed initial boundary value problem for a class of reaction diffusion equation is considered. Under appropriate conditions, the existence-uniqueness and the asymptotic behavior of the solution are showed by using the fixed-point theorem. 展开更多
关键词 singular perturbation reaction diffusion equation fixed-point theorem
下载PDF
STABILITY OF STATIONARY STATE SOLUTION FOR A REACTION DENSITY-DEPENDENT DIFFUSION EQUATION
17
作者 张国初 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第11期1039-1049,共11页
In this paper we are interested in the large time behavior of the nonlinear diffusion equationWe consider functions which allow the equation to possess traveling wave solutions. We first present an existence and uniqu... In this paper we are interested in the large time behavior of the nonlinear diffusion equationWe consider functions which allow the equation to possess traveling wave solutions. We first present an existence and uniqueness as well as some comparison principle result of generalized solutions to the Cauchy problem. Then we give for some threshold results, from which we can see that u=a is stable, while u= 0 or u=1 is unstable under some assumptions, etc. 展开更多
关键词 STABILITY OF STATIONARY STATE SOLUTION FOR A reaction DENSITY-DEPENDENT diffusion EQUATION
下载PDF
UPPER SEMICONTINUITY OF ATTRACTORS FORTHE REACTION DIFFUSION EQUATION
18
作者 郭柏灵 王碧祥 《Acta Mathematica Scientia》 SCIE CSCD 1998年第2期139-145,共7页
This paper deals with the reaction diffusion equation in domain, Omega = R or Omega = (-L, L) with L < infinity. Let A(L) and A be the global attractor of this equation corresponding to Omega = (-L,L) and Omega = R... This paper deals with the reaction diffusion equation in domain, Omega = R or Omega = (-L, L) with L < infinity. Let A(L) and A be the global attractor of this equation corresponding to Omega = (-L,L) and Omega = R, respectively. It is showed that the global attractor A is upper semicontinuity at 0 with respect to the sets {A(L)} in some sense. 展开更多
关键词 global attractor upper semicontinuity reaction diffusion equation
全文增补中
ASYMPTOTIC PROPERTIES OF FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES 被引量:1
19
作者 Niu Jianren Den Jin Xu DaoyiDept.of Math.,Sichuan Univ.,Chengdu 610064,China. 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2003年第4期431-441,共11页
The paper is devoted to the asymptotic properties of functional differential equations in Banach spaces.The criteria of the invariant and attracting sets are obtained.Particularly, the sufficient condition of asymptot... The paper is devoted to the asymptotic properties of functional differential equations in Banach spaces.The criteria of the invariant and attracting sets are obtained.Particularly, the sufficient condition of asymptotic stability of the equilibrium point is given as the system has an equilibrium point.Several examples are also worked out to demonstrate the validity of the results. 展开更多
关键词 functional differential equations reaction diffusion equations invariant sets attracting sets
下载PDF
EXPONENTIAL TIME DIFFERENCING-PADE FINITE ELEMENT METHOD FOR NONLINEAR CONVECTION-DIFFUSION-REACTION EQUATIONS WITH TIME CONSTANT DELAY
20
作者 Haishen Dai Qiumei Huang Cheng Wang 《Journal of Computational Mathematics》 SCIE CSCD 2023年第3期370-394,共25页
In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK ... In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes. 展开更多
关键词 Nonlinear delayed convection diffusion reaction equations ETD-Pad´e scheme Lipshitz continuity L^(2)stability analysis Convergence analysis and error estimate
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部