In this paper, a class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with boundary perturbation are considered under suitable conditions. Firstly, by dint of the re...In this paper, a class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with boundary perturbation are considered under suitable conditions. Firstly, by dint of the regular perturbation method, the outer solution of the original problem is obtained. Secondly, by using the stretched variable and the expansion theory of power series the initial layer of the solution is constructed. And then, by using the theory of differential inequalities, the asymptotic behavior of the solution for the initial boundary value problems is studied. Finally, using some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.展开更多
The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original pr...The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.展开更多
A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, first, the outer solut...A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, first, the outer solution of the original problem was obtained. Secondly, using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer was constructed. Finally, using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems was studied, and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation were discussed.展开更多
A class of nonlinear initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions and using the theory of differential inequalities the asymptoti...A class of nonlinear initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions and using the theory of differential inequalities the asymptotic solution of the initial boundary value problems is studied.展开更多
A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with two parameters and boundary perturbation were considered.Under suitable conditions,the existence,uniquene...A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with two parameters and boundary perturbation were considered.Under suitable conditions,the existence,uniqueness and asymptotic behavior of solutions for the initial boundary value problems were studied.An example was also given to illustrate our main results.展开更多
A class of nonlinear nonlocal singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, firstly, the outer solutio...A class of nonlinear nonlocal singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained; secondly, by using the stretched variable, the composing expansion method and the expanding theory of power series, the initial layer is constructed; and finally, by using the theory of differential inequalities the asymptotic behavior of solutions for initial boundary value problems is studied, and including some relational inequalities the existence and uniqueness of solutions for the original problem and the uniformly valid asymptotic estimation are discussed.展开更多
Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region....Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region. A non-equidistant finite difference method is presented according to the property of boundary layer. The region is divided into an inner boundary layer region and an outer boundary layer region according to transition point of Shishkin. The steps sizes are equidistant in the outer boundary layer region. The step sizes are gradually increased in the inner boundary layer region such that half of the step sizes are different from each other. Truncation error is estimated. The proposed method is stable and uniformly convergent with the order higher than 2. Numerical results are given, which are in agreement with the theoretical result.展开更多
A class of nonlinear for singularly perturbed problems for reaction diffusion equations with time delays are considered. Under suitable conditions, using theory of differential inequalities the asymptotic behavior of ...A class of nonlinear for singularly perturbed problems for reaction diffusion equations with time delays are considered. Under suitable conditions, using theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied.展开更多
In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Unsing the iteration method and the comparison theorem, the existence, uniqueness and i...In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Unsing the iteration method and the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.展开更多
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for...A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.展开更多
A class of singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for the initial boundary value problems is studied.
A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problems for reaction diffusion equations is considered. Under suitable conditions, firstly, the outer solution of the original probl...A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problems for reaction diffusion equations is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed, finally, using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.展开更多
A class of nonlinear predator prey reaction diffusion systems for singularly pe rturbed problems are considered.Under suitable conditions, by using theory of di fferential inequalities the existence and asymptotic be...A class of nonlinear predator prey reaction diffusion systems for singularly pe rturbed problems are considered.Under suitable conditions, by using theory of di fferential inequalities the existence and asymptotic behavior of solution for in itial boundary value problems are studied.展开更多
The nonlinear predator-prey reaction diffusion systems for singularly perturbed Robin Problems are considered. Under suitable conditions, the theory of differential inequalities can be used to study the asymptotic beh...The nonlinear predator-prey reaction diffusion systems for singularly perturbed Robin Problems are considered. Under suitable conditions, the theory of differential inequalities can be used to study the asymptotic behavior of the solution for initial boundary value problems.展开更多
The singularly perturbed initial boundary value problems for the reaction diffusion system are raised. Firstly, under suitable conditions, using a iteration technique, the differential inequalities theorem is construc...The singularly perturbed initial boundary value problems for the reaction diffusion system are raised. Firstly, under suitable conditions, using a iteration technique, the differential inequalities theorem is constructed and introducing two auxiliary functions the existence and uniqueness theorem of solution for the basic reaction diffusion system is proved. Using the singularly perturbed method the formal asymptotic expressions of the solution are constructed with power series theory. By using the comparison theorem the existence and its asymptotic behavior of solution for the original problem are studied. Finally, using method of estimate inequalities, the structure of solutions for the problem is discussed thoroughly in three cases and asymptotic solution of the original problem is given. The asymptotic behavior of solution in the three cases is proved.展开更多
The problems of the nonlocal boundary conditions for the singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for ...The problems of the nonlocal boundary conditions for the singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for the initial boundary value problems are studied.展开更多
A class of initial boundary value problems of differential-difference equations for reaction diffusion with a small time delay is considered. Under suitable conditions and by using the stretched variable method, a for...A class of initial boundary value problems of differential-difference equations for reaction diffusion with a small time delay is considered. Under suitable conditions and by using the stretched variable method, a formal asymptotic solution is constructed. Then, by use of the theory of differential inequalities, the uniform validity of the solution is proved.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
The singularly perturbed initial boundary value problem for a class of reaction diffusion equation is considered. Under appropriate conditions, the existence-uniqueness and the asymptotic behavior of the solution are ...The singularly perturbed initial boundary value problem for a class of reaction diffusion equation is considered. Under appropriate conditions, the existence-uniqueness and the asymptotic behavior of the solution are showed by using the fixed-point theorem.展开更多
The singularly perturbed initial boudary value problem for the nonlocal reaction diffusion systems was considered. Using iteration method the comparison theorem was obtained. Introducing stretched variable the formal ...The singularly perturbed initial boudary value problem for the nonlocal reaction diffusion systems was considered. Using iteration method the comparison theorem was obtained. Introducing stretched variable the formal asymptotic solution was constructed. And the existence and its asymptotic behavior of solution for the problem were studied by using the method of the upper and lower solution.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 40676016, 10471039), the National Key Basic Research Special Foundation of China (No. 2004CB418304), the Key Basic Research Foundation of the Chinese Academy of Sciences (No. KZCX3-SW-221) and in part by EInstitutes of Shanghai Municipal Education Commission (No. E03004)
文摘In this paper, a class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with boundary perturbation are considered under suitable conditions. Firstly, by dint of the regular perturbation method, the outer solution of the original problem is obtained. Secondly, by using the stretched variable and the expansion theory of power series the initial layer of the solution is constructed. And then, by using the theory of differential inequalities, the asymptotic behavior of the solution for the initial boundary value problems is studied. Finally, using some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.
基金Supported by the National Natural Science Foundation of China (90111011 and 10471039)the National Key Project for Basics Research (2003CB415101-03 and 2004CB418304)the Key Project of the Chinese Academy of Sciences (KZCX3-SW-221)the Natural Science Foundation of Zhejiang (Y604127).
文摘The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.
基金Project supported by the National Natural Science Foundation of China (Nos. 90111011 and 10471039) the E-Institute of Shanghai Municipal Education Commission (N. E03004) the Natural Science Foundation of Zhejiang Province (Y604127)
文摘A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, first, the outer solution of the original problem was obtained. Secondly, using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer was constructed. Finally, using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems was studied, and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation were discussed.
基金Supported by the National Natural Science Foundation of China (40676016 and 10471039)the National Key Basic Research Special Foundation of China (2004CB418304)+1 种基金the Key Basic Research Foundation of the Chinese Academy of Sciences (KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission (N.E03004).
文摘A class of nonlinear initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions and using the theory of differential inequalities the asymptotic solution of the initial boundary value problems is studied.
基金National Natural Science Foundation of China(No.11271372)Hunan Provincial National Natural Science Foundation of China(No.12JJ2004)the Graduate Innovation Project of Central South University,China(No.2014zzts136)
文摘A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with two parameters and boundary perturbation were considered.Under suitable conditions,the existence,uniqueness and asymptotic behavior of solutions for the initial boundary value problems were studied.An example was also given to illustrate our main results.
基金The NNSF (90111011 and 10471039) of China,the National Key Project for Basics Research (2003CB415101-03 and 2004CB418304),the Key Project of the Chinese Academy of Sciences (KZCX3-SW-221) and in part by E-Insitutes of Shanghai Municipal Education Commission (N.E03004).
文摘A class of nonlinear nonlocal singularly perturbed Robin initial boundary value problems for reaction diffusion equations with boundary perturbation is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained; secondly, by using the stretched variable, the composing expansion method and the expanding theory of power series, the initial layer is constructed; and finally, by using the theory of differential inequalities the asymptotic behavior of solutions for initial boundary value problems is studied, and including some relational inequalities the existence and uniqueness of solutions for the original problem and the uniformly valid asymptotic estimation are discussed.
基金supported by the Educational Department Foundation of Fujian Province of China(Nos. JA08140 and A0610025)the Scientific Research Foundation of Zhejiang University of Scienceand Technology (No. 2008050)the National Natural Science Foundation of China (No. 50679074)
文摘Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region. A non-equidistant finite difference method is presented according to the property of boundary layer. The region is divided into an inner boundary layer region and an outer boundary layer region according to transition point of Shishkin. The steps sizes are equidistant in the outer boundary layer region. The step sizes are gradually increased in the inner boundary layer region such that half of the step sizes are different from each other. Truncation error is estimated. The proposed method is stable and uniformly convergent with the order higher than 2. Numerical results are given, which are in agreement with the theoretical result.
基金The Project Supported by National Natural Science Foundation of China(10071045)
文摘A class of nonlinear for singularly perturbed problems for reaction diffusion equations with time delays are considered. Under suitable conditions, using theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied.
基金The project is supported by The National Natural Science Foundation of China(10071048)"Hundred People Project" of Chinese Academy of Sciences
文摘In this paper the singularly perturbed initial boundary value problems for the nonlocal reaction diffusion system are considered. Unsing the iteration method and the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.
基金The Importent Study Profect of the National Natural Science Poundation of China(90211004)The Natural Sciences Foundation of Zheiiang(102009)
文摘A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.
文摘A class of singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for the initial boundary value problems is studied.
文摘A class of nonlinear nonlocal for singularly perturbed Robin initial boundary value problems for reaction diffusion equations is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed, finally, using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied and educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation is discussed.
基金Supported by important study project of the National Natural Science Foundation of China(9 0 2 1 1 0 0 4 ) and by the"Hundred Talents'Project"of Chinese Academy of Sciences
文摘A class of nonlinear predator prey reaction diffusion systems for singularly pe rturbed problems are considered.Under suitable conditions, by using theory of di fferential inequalities the existence and asymptotic behavior of solution for in itial boundary value problems are studied.
文摘The nonlinear predator-prey reaction diffusion systems for singularly perturbed Robin Problems are considered. Under suitable conditions, the theory of differential inequalities can be used to study the asymptotic behavior of the solution for initial boundary value problems.
基金Supported by the National Natural Science Foundation of China (40676016 and 10471039)the National Program for Basic Science Researches of China (2003CB415101-03 and 2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences (KZCX3-SW-221)E-Insitutes of Shanghai Municipal Education Commission (N.E03004)
文摘The singularly perturbed initial boundary value problems for the reaction diffusion system are raised. Firstly, under suitable conditions, using a iteration technique, the differential inequalities theorem is constructed and introducing two auxiliary functions the existence and uniqueness theorem of solution for the basic reaction diffusion system is proved. Using the singularly perturbed method the formal asymptotic expressions of the solution are constructed with power series theory. By using the comparison theorem the existence and its asymptotic behavior of solution for the original problem are studied. Finally, using method of estimate inequalities, the structure of solutions for the problem is discussed thoroughly in three cases and asymptotic solution of the original problem is given. The asymptotic behavior of solution in the three cases is proved.
文摘The problems of the nonlocal boundary conditions for the singularly perturbed reaction diffusion systems are considered. Under suitable conditions, using the comparison theorem the asymptotic behavior of solution for the initial boundary value problems are studied.
基金Project supported by the National Natural Science Foundation of China (No. 40876010)the Major Projects of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q03-08)+2 种基金the Research and Development Special Fund for Public Welfare Industry (No. GYHY200806010)the Special Fund of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, the Foundation of Shanghai Municipal Education Commission(No. E03004)the Natural Science Foundation of Zhejiang Province (No. Y6090164)
文摘A class of initial boundary value problems of differential-difference equations for reaction diffusion with a small time delay is considered. Under suitable conditions and by using the stretched variable method, a formal asymptotic solution is constructed. Then, by use of the theory of differential inequalities, the uniform validity of the solution is proved.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金The project is supported by the National Natural Science Foundation of China(No.10071048)
文摘The singularly perturbed initial boundary value problem for a class of reaction diffusion equation is considered. Under appropriate conditions, the existence-uniqueness and the asymptotic behavior of the solution are showed by using the fixed-point theorem.
文摘The singularly perturbed initial boudary value problem for the nonlocal reaction diffusion systems was considered. Using iteration method the comparison theorem was obtained. Introducing stretched variable the formal asymptotic solution was constructed. And the existence and its asymptotic behavior of solution for the problem were studied by using the method of the upper and lower solution.