This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the op...This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the optimal Lp,1≤ p ≤ +∞,convergence rate of solutions for small initial data.Then we establish the local existence of solutions,the blow up criterion and the sufficient condition to ensure the nonnegativity of solutions for large initial data.Our approach is based on the detailed analysis of the Green function of the linearized equation and some energy estimates.展开更多
The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical model by the following governing nonlinear partial differential equations containing...The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical model by the following governing nonlinear partial differential equations containing velocity vector, temperature field, pressure field, and gas mass field. The mixed finite element (MFE) method is employed to study the system of equations for the vapor deposition chemical reaction processes. The semidiscrete and fully discrete MFE formulations are derived. And the existence and convergence (error estimate) of the semidiscrete and fully discrete MFE solutions are demonstrated. By employing MFE method to treat the system of equations for the vapor deposition chemical reaction processes, the numerical solutions of the velocity vector, the temperature field, the pressure field, and the gas mass field can be found out simultaneously. Thus, these researches are not only of important theoretical means, but also of extremely extensive applied vistas.展开更多
In this paper we consider nonlinear delay diffusion-reaction equations with initial and Dirichlet boundary conditions. The behaviour and the stability of the solution of such initial boundary value problems (IBVPs) ...In this paper we consider nonlinear delay diffusion-reaction equations with initial and Dirichlet boundary conditions. The behaviour and the stability of the solution of such initial boundary value problems (IBVPs) are studied using the energy method. Simple numerical methods are considered for the computation of numerical approximations to the solution of the nonlinear IBVPs. Using the discrete energy method we study the stability and convergence of the numerical approximations. Numerical experiments are carried out to illustrate our theoretical results.展开更多
In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK ...In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.展开更多
This paper studies the asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in R^(n).Firstly,the global existence and uniqueness of classical solutions for small initial data are est...This paper studies the asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in R^(n).Firstly,the global existence and uniqueness of classical solutions for small initial data are established.Then,we obtain the L^(p),2≤p≤+∞decay rate of solutions.The approach is based on detailed analysis of the Green function of the linearized equation with the technique of long wave-short wave decomposition and the Fourier analysis.展开更多
A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for...A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.展开更多
The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution...The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution for initial boundary value problems are studied,where the reduced problems possess two intersecting solutions.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
The singularly perturbed initial boundary value problem for a class of reaction diffusion equation is considered. Under appropriate conditions, the existence-uniqueness and the asymptotic behavior of the solution are ...The singularly perturbed initial boundary value problem for a class of reaction diffusion equation is considered. Under appropriate conditions, the existence-uniqueness and the asymptotic behavior of the solution are showed by using the fixed-point theorem.展开更多
In this paper we consider the initial-boundary value problems for a class ofapplications, such as biomathematics and biochemistry.Applying the method ofcomposile expansion we construct the formally asymptotic solution...In this paper we consider the initial-boundary value problems for a class ofapplications, such as biomathematics and biochemistry.Applying the method ofcomposile expansion we construct the formally asymptotic solution of the problemdescribed. With the help of theory of upper and lower solutions we prove the uniformlyvalidity of the formal solution and the existence of solution of the original problem.展开更多
A class of initial boundary value problems for the reaction diffusion equations are considered.The asymptotic behavior of solution for the problem is obtained using the theory of differential inequality.
A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with two parameters and boundary perturbation were considered.Under suitable conditions,the existence,uniquene...A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with two parameters and boundary perturbation were considered.Under suitable conditions,the existence,uniqueness and asymptotic behavior of solutions for the initial boundary value problems were studied.An example was also given to illustrate our main results.展开更多
The generialized Kuramoto Sivashinski equation and Fisher equation in chemical reaction diffusion was studied in this paper. By introducing a new method, the anthors obtained the exact traveling wave solution for th...The generialized Kuramoto Sivashinski equation and Fisher equation in chemical reaction diffusion was studied in this paper. By introducing a new method, the anthors obtained the exact traveling wave solution for the two types of reaction diffusion equations.展开更多
In this paper we are interested in the large time behavior of the nonlinear diffusion equationWe consider functions which allow the equation to possess traveling wave solutions. We first present an existence and uniqu...In this paper we are interested in the large time behavior of the nonlinear diffusion equationWe consider functions which allow the equation to possess traveling wave solutions. We first present an existence and uniqueness as well as some comparison principle result of generalized solutions to the Cauchy problem. Then we give for some threshold results, from which we can see that u=a is stable, while u= 0 or u=1 is unstable under some assumptions, etc.展开更多
For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
This paper deals with the reaction diffusion equation in domain, Omega = R or Omega = (-L, L) with L < infinity. Let A(L) and A be the global attractor of this equation corresponding to Omega = (-L,L) and Omega = R...This paper deals with the reaction diffusion equation in domain, Omega = R or Omega = (-L, L) with L < infinity. Let A(L) and A be the global attractor of this equation corresponding to Omega = (-L,L) and Omega = R, respectively. It is showed that the global attractor A is upper semicontinuity at 0 with respect to the sets {A(L)} in some sense.展开更多
A new numerical algorithm is presented to simulate the explosion reaction process of mine explosives based on the equation of state, the equation of mass conservation and thermodynamics balance equation of explosion p...A new numerical algorithm is presented to simulate the explosion reaction process of mine explosives based on the equation of state, the equation of mass conservation and thermodynamics balance equation of explosion products. With the affection of reversible reaction of explosion products to explosion reaction equations and thermodynamics parameters considered, the computer program has been developed. The computation values show that computer simulation results are identical with the testing ones.展开更多
The paper is devoted to the asymptotic properties of functional differential equations in Banach spaces.The criteria of the invariant and attracting sets are obtained.Particularly, the sufficient condition of asymptot...The paper is devoted to the asymptotic properties of functional differential equations in Banach spaces.The criteria of the invariant and attracting sets are obtained.Particularly, the sufficient condition of asymptotic stability of the equilibrium point is given as the system has an equilibrium point.Several examples are also worked out to demonstrate the validity of the results.展开更多
In this paper we deal with the initial boundary value problem for two classes of reaction diffusion systems with two source terms in bounded domain. Under some assumptions on the exponents and the initial data, applyi...In this paper we deal with the initial boundary value problem for two classes of reaction diffusion systems with two source terms in bounded domain. Under some assumptions on the exponents and the initial data, applying the comparison principle, the maximum prin- ciple and the supersolution-subsolution method, we prove the global existence and blow up of solutions. We also establish some upper blow up rates.展开更多
To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- ga...To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- gated using FeCl3 as coextracting agent. Liquid-liquid extraction reaction mechanisms were proposed and the stoichiometry of tetrachloroferrate(III) complex with lithium was obtained by regressing the experimental data. It is found that the stoichiometry of tetrachloroferrate(III) to lithium in the complex is 1 : 1 with either TBP or MIBK as extractant in kerosene. The stoichiometry of the complex of TBP with Li was 1 : 1 and that of MIBK with Li was 2 : 1. The formed complexes of TBP and MIBK with lithium are determined to be LiFeCla-TBP and LiFeC14.2MIBK, respectively, according to the rule of neutralization.展开更多
文摘This paper studies the time asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in one dimension.First,the pointwise estimates of solutions are obtained,furthermore,we obtain the optimal Lp,1≤ p ≤ +∞,convergence rate of solutions for small initial data.Then we establish the local existence of solutions,the blow up criterion and the sufficient condition to ensure the nonnegativity of solutions for large initial data.Our approach is based on the detailed analysis of the Green function of the linearized equation and some energy estimates.
基金Project supported by the National Natural Science Foundation of China (Nos.10471100 and 40437017)the Science and Technology Foundation of Beijing Jiaotong University
文摘The vapor deposition chemical reaction processes, which are of extremely extensive applications, can be classified as a mathematical model by the following governing nonlinear partial differential equations containing velocity vector, temperature field, pressure field, and gas mass field. The mixed finite element (MFE) method is employed to study the system of equations for the vapor deposition chemical reaction processes. The semidiscrete and fully discrete MFE formulations are derived. And the existence and convergence (error estimate) of the semidiscrete and fully discrete MFE solutions are demonstrated. By employing MFE method to treat the system of equations for the vapor deposition chemical reaction processes, the numerical solutions of the velocity vector, the temperature field, the pressure field, and the gas mass field can be found out simultaneously. Thus, these researches are not only of important theoretical means, but also of extremely extensive applied vistas.
基金Centro de Matemtica da Universidade de Coimbra,by the project PTDC/MAT/74548/2006Instituto Superior de Engenharia de Coimbra
文摘In this paper we consider nonlinear delay diffusion-reaction equations with initial and Dirichlet boundary conditions. The behaviour and the stability of the solution of such initial boundary value problems (IBVPs) are studied using the energy method. Simple numerical methods are considered for the computation of numerical approximations to the solution of the nonlinear IBVPs. Using the discrete energy method we study the stability and convergence of the numerical approximations. Numerical experiments are carried out to illustrate our theoretical results.
文摘In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.
基金supported by the Science and Technology Research Program of Chongqing Municipal Educaton Commission(Grant No.KJQN201900543)the Natural Science Foundation of Chongqing(Grant No.cstc2020jcyj-msxm X0709,Grant No.cstc2020jcyj-jq X0022)the Natural Science Foundation of China(Grant No.12001073)。
文摘This paper studies the asymptotic behavior of solutions for a nonlinear convection diffusion reaction equation in R^(n).Firstly,the global existence and uniqueness of classical solutions for small initial data are established.Then,we obtain the L^(p),2≤p≤+∞decay rate of solutions.The approach is based on detailed analysis of the Green function of the linearized equation with the technique of long wave-short wave decomposition and the Fourier analysis.
基金The Importent Study Profect of the National Natural Science Poundation of China(90211004)The Natural Sciences Foundation of Zheiiang(102009)
文摘A class of nonlinear singularly perturbed problems for reaction diffusion equations are considered. Under suitable conditions, by using the theory of differential inequalities, the asymptotic behavior of solutions for the initial boundary value problems are studied, reduced problems of which possess two intersecting solutions.
基金Supported by the National Natural Scince Foundation of China( 1 0 0 71 0 4 8) ,and the"Hundred TalentsProject"of Chinese Academy of Sciences
文摘The singularly perturbed initial boundary value problems for reaction diffusion equations are considered.Under suitable conditions and by using the theory of differential inequality,the asymptotic behavior of solution for initial boundary value problems are studied,where the reduced problems possess two intersecting solutions.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金The project is supported by the National Natural Science Foundation of China(No.10071048)
文摘The singularly perturbed initial boundary value problem for a class of reaction diffusion equation is considered. Under appropriate conditions, the existence-uniqueness and the asymptotic behavior of the solution are showed by using the fixed-point theorem.
文摘In this paper we consider the initial-boundary value problems for a class ofapplications, such as biomathematics and biochemistry.Applying the method ofcomposile expansion we construct the formally asymptotic solution of the problemdescribed. With the help of theory of upper and lower solutions we prove the uniformlyvalidity of the formal solution and the existence of solution of the original problem.
基金the National Natural Science Foundation of China( 90 2 1 1 0 0 4 ,1 0 4 71 0 39) ,and by the"Hundred Talents Project"of Chinese Academy of Sciences
文摘A class of initial boundary value problems for the reaction diffusion equations are considered.The asymptotic behavior of solution for the problem is obtained using the theory of differential inequality.
基金National Natural Science Foundation of China(No.11271372)Hunan Provincial National Natural Science Foundation of China(No.12JJ2004)the Graduate Innovation Project of Central South University,China(No.2014zzts136)
文摘A class of nonlinear singularly perturbed initial boundary value problems for reaction diffusion equations with two parameters and boundary perturbation were considered.Under suitable conditions,the existence,uniqueness and asymptotic behavior of solutions for the initial boundary value problems were studied.An example was also given to illustrate our main results.
文摘The generialized Kuramoto Sivashinski equation and Fisher equation in chemical reaction diffusion was studied in this paper. By introducing a new method, the anthors obtained the exact traveling wave solution for the two types of reaction diffusion equations.
文摘In this paper we are interested in the large time behavior of the nonlinear diffusion equationWe consider functions which allow the equation to possess traveling wave solutions. We first present an existence and uniqueness as well as some comparison principle result of generalized solutions to the Cauchy problem. Then we give for some threshold results, from which we can see that u=a is stable, while u= 0 or u=1 is unstable under some assumptions, etc.
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
文摘This paper deals with the reaction diffusion equation in domain, Omega = R or Omega = (-L, L) with L < infinity. Let A(L) and A be the global attractor of this equation corresponding to Omega = (-L,L) and Omega = R, respectively. It is showed that the global attractor A is upper semicontinuity at 0 with respect to the sets {A(L)} in some sense.
文摘A new numerical algorithm is presented to simulate the explosion reaction process of mine explosives based on the equation of state, the equation of mass conservation and thermodynamics balance equation of explosion products. With the affection of reversible reaction of explosion products to explosion reaction equations and thermodynamics parameters considered, the computer program has been developed. The computation values show that computer simulation results are identical with the testing ones.
基金Supported by the National Natural Science Foundation of China( 1 9831 0 30 ) ,( 1 0 1 71 0 72 ) .
文摘The paper is devoted to the asymptotic properties of functional differential equations in Banach spaces.The criteria of the invariant and attracting sets are obtained.Particularly, the sufficient condition of asymptotic stability of the equilibrium point is given as the system has an equilibrium point.Several examples are also worked out to demonstrate the validity of the results.
基金supported by the National Natural Science Foundation of China(11471087)the China Postdoctoral Science Foundation(2013M540270)+1 种基金the Heilongjiang Postdoctoral Foundation(LBH-Z13056,LBHZ15036)the Fundamental Research Funds for the Central Universities
文摘In this paper we deal with the initial boundary value problem for two classes of reaction diffusion systems with two source terms in bounded domain. Under some assumptions on the exponents and the initial data, applying the comparison principle, the maximum prin- ciple and the supersolution-subsolution method, we prove the global existence and blow up of solutions. We also establish some upper blow up rates.
基金Supported by the National High Technology Research and Development Program of China (2008AA06Z111)the Qinghai Key Technology R&D Program (2011-J-154)
文摘To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- gated using FeCl3 as coextracting agent. Liquid-liquid extraction reaction mechanisms were proposed and the stoichiometry of tetrachloroferrate(III) complex with lithium was obtained by regressing the experimental data. It is found that the stoichiometry of tetrachloroferrate(III) to lithium in the complex is 1 : 1 with either TBP or MIBK as extractant in kerosene. The stoichiometry of the complex of TBP with Li was 1 : 1 and that of MIBK with Li was 2 : 1. The formed complexes of TBP and MIBK with lithium are determined to be LiFeCla-TBP and LiFeC14.2MIBK, respectively, according to the rule of neutralization.