The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that...The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.展开更多
Solidification curve of Al 8.5Fe 1.7Si was calculated by thermodynamic models. Phase constitutions of Al 8.5Fe, Al 8.5Fe 1.7Si and Al 8.5Fe 1.7Si 1.3V alloys were analysed at different cooling rates by means of optica...Solidification curve of Al 8.5Fe 1.7Si was calculated by thermodynamic models. Phase constitutions of Al 8.5Fe, Al 8.5Fe 1.7Si and Al 8.5Fe 1.7Si 1.3V alloys were analysed at different cooling rates by means of optical microscopy, X ray diffraction, transmission electron microscopy and so on. Microstructures of spraying deposited ingots and their hot processed samples were detected, and the phase transitions during spraying deposition, heating process and hot processing were also studied. The results show that, by spraying deposition, the ideal structures of α (Al) and Al 12 (Fe, V) 3Si can be obtained when cooling rate is above 10 5 K/s; and restraining the formation of Al 8(Fe,V) 2Si/Al 13 Fe 4 can improve the properties of the alloy.展开更多
In-situ HVEM observation on phase transition of the YBa_2Cu_3O_(7-x) superconducting compound in pro- cess of heating was carried out,and high temperature X-ray diffraction analysis in air and X-ray diffraction phase ...In-situ HVEM observation on phase transition of the YBa_2Cu_3O_(7-x) superconducting compound in pro- cess of heating was carried out,and high temperature X-ray diffraction analysis in air and X-ray diffraction phase analysis for the sample treated in vacuum condition were made.The results showed that the temperature of phase transition is related to oxygen content in the sample and in general,is 100℃ to 120℃ lower in vacu- um condition than in air.At 320℃ to 350℃ twin bands begin to disappear,and some Cu_2O are formed on the surface of the sample and transit from orthorhombic YBa_2Cu_3O_(7-x) to arthorhombic Y_2BaCuO_5 compound. This transition was completed at about 500℃.Above 900℃,this compound consists of the Y_2BaCuO_5, BaCuO_2,Y_2O_3 and some other minor compounds.No phase transition was observed during cooling the sample.展开更多
The thawing time of ice and freezed Salomon fish during high pressure assisted thawing process was evaluated by computer simulation using a finite element and the results were compared with those under atmospheric pre...The thawing time of ice and freezed Salomon fish during high pressure assisted thawing process was evaluated by computer simulation using a finite element and the results were compared with those under atmospheric pressure. The apparent specific heat method was adopted to treat the release of latent heat. The effects of different factors on the high pressure assisted thawing process were analyzed. The time reductions of different sample dimensions were estimated and the temperature contour of thawing at different conditions was obtained. The results showed that the temperature gap of phase transition was the main factor, which could shorten the thawing time. Moreover, a second order relationship was obtained between pressure and phase transition time.展开更多
In this article, we study the nonlinear stochastic heat equation in the spatial domain R^d subject to a Gaussian noise which is white in time and colored in space. The spatial correlation can be any symmetric, nonnega...In this article, we study the nonlinear stochastic heat equation in the spatial domain R^d subject to a Gaussian noise which is white in time and colored in space. The spatial correlation can be any symmetric, nonnegative and nonnegative-definite function that satisfies Dalang's condition. We establish the existence and uniqueness of a random field solution starting from measure-valued initial data. We find the upper and lower bounds for the second moment. With these moment bounds, we first establish some necessary and sufficient conditions for the phase transition of the moment Lyapunov exponents, which extends the classical results from the stochastic heat equation on Z^d to that on R^d.Then, we prove a localization result for the intermittency fronts, which extends results by Conus and Khoshnevisan [9] from one space dimension to higher space dimension. The linear case has been recently proved by Huang et al [17] using different techniques.展开更多
After laser quenching and tempering of three kinds of annealed tool high-speed steel(W18Cr-4V, W9Mo3Cr4V1, W6Mo5Cr4V2) test samples, the microhardness measurer was used to test the samples and some problems, such as t...After laser quenching and tempering of three kinds of annealed tool high-speed steel(W18Cr-4V, W9Mo3Cr4V1, W6Mo5Cr4V2) test samples, the microhardness measurer was used to test the samples and some problems, such as the hardness and depth of hardening-quenching layer were analyzed. Furthermore, after laser quenching and tempering of the quenched and three-time tempered high-speed steel (W18Cr4V) and its hardness analyzing, different results of laser-quenching samples were obtained under different initial heat-treating.展开更多
A novel compound-monohydrated zinc nicotinate was prepared via room temperature solid phase synthesis and ball grinding.FTIR,chemical and elemental analyses and X-ray powder diffraction technique were applied to chara...A novel compound-monohydrated zinc nicotinate was prepared via room temperature solid phase synthesis and ball grinding.FTIR,chemical and elemental analyses and X-ray powder diffraction technique were applied to characterizing the structure and composition of the complex.Low-temperature heat capacities of the solid coordination compound were measured by a precision automated adiabatic calorimeter over a temperature range from 77 to 400 K.A solid-solid phase transition process occurred in a temperature range of 321―342 K inferred according to the heat capacity curve,and the peak temperature,molar enthalpy and entropy of the phase transition of monohydrated zinc nicotinate were determined to be Ttrs=(340.584±0.829) K,ΔtrsHm=(12.682±0.041) kJ/mol and ΔtrsSm=(37.235±0.101) KJ/mol).The experimental values of the molar heat capacities in the temperature regions of 77―321 K and 342―400 K were,respectively,fitted to two polynomial equations.In addition,the polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K.展开更多
Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in th...Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions of 78?295 K and 322?374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X = f(T)], with the help of the least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound, relative to that of the standard reference temperature 293.15 K, were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K. In addition, the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.展开更多
Heat induced in a finite Silver Selenide slab by an external pulsed laser source is studied in dimensionless scale according to hyperbolic heat conduction model (HHCE) using Laplace integral transform technique. The t...Heat induced in a finite Silver Selenide slab by an external pulsed laser source is studied in dimensionless scale according to hyperbolic heat conduction model (HHCE) using Laplace integral transform technique. The temperature profile, the critical time required to initiate phase transition and that to initiate damage at the front surface are obtained for different pulses and are illustrated graphically.展开更多
The molar heat capacities of La2Mo209 and La1.9Sr0.1MO209-δ were obtained using the differential scanning calorimetry (DSC) technique in a temperature range from 298 to 1473 K. The DSC curve of La2Mo209 showed an e...The molar heat capacities of La2Mo209 and La1.9Sr0.1MO209-δ were obtained using the differential scanning calorimetry (DSC) technique in a temperature range from 298 to 1473 K. The DSC curve of La2Mo209 showed an endothermal peak around 834 K corresponding to a first-order monoclinic-cubic phase transition, and the enthalpy change accompanying this phase transition is 5.99 kJ/mol. No evident endothermal peak existed in the DSC curve of La1.9Sr0.1MO209-δ, but a broad thermal anomaly existed in its heat capacity curve at around 832 K. In addition, the heat capacity values of La2Mo209 and La1.9Sr0.1MO209-δ began to decrease at 1196 and 1330 K, respectively. The non-transitional heat capacity values of La2Mo209 and La1.9Sr0.1MO209-δ were formulated using multiple regression analysis in two temperature ranges.展开更多
This is an improved design based on the existing plate type solar water heaters. It aims at making full use of solar energy. To fully absorb radiation, it absorbs coating selectively by adopting the magnetron sputteri...This is an improved design based on the existing plate type solar water heaters. It aims at making full use of solar energy. To fully absorb radiation, it absorbs coating selectively by adopting the magnetron sputtering technology AL-N/AL. this design conduct heat through aluminum material which can reduce the cost meanwhile conduct heat effectively. To ensure the quality of the water at the same time improve the utilization rate of solar energy, this design use phase change for second heat exchange. Take Shanghai for example, where this design and heat transfer model are applied, the average efficiency of water heaters can achieve 68%, which has proven the feasibility of the design. In a word, this design can achieve the goal of energy conservation and emissions reduction and has broad market prospects.展开更多
The heat and mass transfer characteristics under frosting on surface of heat exchanger were experimentally investigated in different conditions of air temperature, relative humidity, and face velocity. The heat transf...The heat and mass transfer characteristics under frosting on surface of heat exchanger were experimentally investigated in different conditions of air temperature, relative humidity, and face velocity. The heat transfer and heat transfer coefficient decreased faster with the high relative humidity, low air temperature and initial face velocity. The air pressure drop rose faster with the high relative humidity and low air velocity.展开更多
The magnetic properties and magnetic phase transition critical behavior of Gd_(3)Ga_5O_(12)single crystals subjected to high-pressure heat treatment were investigated.The results show that high-pressure heat treatment...The magnetic properties and magnetic phase transition critical behavior of Gd_(3)Ga_5O_(12)single crystals subjected to high-pressure heat treatment were investigated.The results show that high-pressure heat treatment reduces the Curie temperature and magnetization of the sample.Under a magnetic field change of 5 T,the maximum isothermal magnetic entropy of the sample is approximately 19.73 J/(kg·K).High-pressure heat treatment increases the phase transition temperature range and leads to an increase in the magnetic refrigeration power.Both Gd_(3)Ga_(5)O_(12)single crystals and the high-pressure heat-treated sample undergo a second-order phase transition.The critical behavior of the samples aligns with the mean field model acquired via critical model fitting.This indicates that the samples exhibit long-range exchange interactions in the system near the Curie temperature.Thus,this material can be used as a magnetic refrigerant for low-temperature applications.展开更多
Heat storage properties of phase change materials(PCMs) are essential characteristics that perform a key role in thermal heat energy storage systems.The thermal properties of PCMs can be improved by developing metal f...Heat storage properties of phase change materials(PCMs) are essential characteristics that perform a key role in thermal heat energy storage systems.The thermal properties of PCMs can be improved by developing metal foam/PCM composites.The addition of metal foam in PCMs has a significant effect on the thermal characteristics of PCMs.In this paper,the heat storage properties of two different metal foam/PCM composites were experimentally examined.The behavior of paraffin in metal foam(copper and iron-nickel)/paraffin composites concerning pure paraffin at a constant heat flux of 1000 W/m^(2) in three directions simultaneously(x,y,and z) was studied.Paraffin was infiltrated into copper and iron-nickel foams to develop composite materials which resulted in enhancing the thermal conductivity of the paraffin.A comparative analysis is made on the heat storage properties of paraffin in copper and iron-nickel foams/paraffin composites.Inner temperature distribution during the phase transition process is experimentally evaluated.This comparison indicates that temperature uniformity in copper foam/paraffin composite is better than in iron-nickel foam/paraffin composite and pure paraffin at the same heat flux.Experimental results show that at heat flux of 1000 W/m^(2),the heat storage time for copper foam/paraffin composite is 20.63% of that of iron-nickel foam/paraffin composite.展开更多
We present the temperature-dependent susceptibility and specific heat measurement of spinel ZnV204. The structural transition with orbital ordering and the antiferromagnetic transition with spin ordering were observed...We present the temperature-dependent susceptibility and specific heat measurement of spinel ZnV204. The structural transition with orbital ordering and the antiferromagnetic transition with spin ordering were observed at 50 K and 37 K, respectively. By analysis of the hysteresis behavior between the specific heat curves obtained in warming and cooling processes, the structural transition was confirmed to be the first-order transition, while the antiferromagnetic transition was found to be of the second-order type. At the structural transition, the latent heat and entropy change were calculated from the excess specific heat, and the derivative of pressure with respect to temperature was obtained using the Clausius--Clapayron equation. At the magnetic transition, the width of the critical fluctuation region was obtained to be about 0.5 K by comparing with Gaussian fluctuations. In the critical region, the critical behavior was analyzed by using renormalization-group theory. The critical amplitude ratio A+/A- = 1.46, which deviates from the 3D Heisenburg model; while the critical exponent a is -0.011, which is close to the 3D XY model. We proposed that these abnormal critical behaviors can be attributed to strong spin-orbital coupling accompanied with the antiferromagnetic transition. Moreover, in the low temperature range (2-5 K), the Fermi energy, the density of states near the Fermi surface, and the low limit of Debye temperature were estimated to be 2.42 eV, 2.48 eV-1, and 240 K, respectively.展开更多
Parity-time (PT) symmetry/anti-parity-time (APT) symmetry in non-Hermitian systems reveal profound physics andspawn intriguing effects. Recently, it has been introduced into diffusive systems together with the concept...Parity-time (PT) symmetry/anti-parity-time (APT) symmetry in non-Hermitian systems reveal profound physics andspawn intriguing effects. Recently, it has been introduced into diffusive systems together with the concept of exceptionalpoints (EPs) from quantum mechanics and the wave systems. With the aid of convection, we can generate complex thermalconductivity and imitate various wavelike dynamics in heat transfer, where heat flow can be “stopped” or moving against thebackground motion. Non-Hermitian diffusive systems offer us a new platform to investigate the heat wave manipulation.In this review, we first introduce the construction of APT symmetry in a simple double-channel toy model. Then we showthe phase transition around the EP. Finally, we extend the double-channel model to the four-channel one for showing thehigh-order EP and the associated phase transition. In a general conclusion, the phase difference of adjacent channels isalways static in the APT symmetric phase, while it dynamically evolves or oscillates when the APT symmetry is broken.展开更多
Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature s...Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature statistical approach with main emphasis to fluctuations. The occurrence of a peak structure in the specific heat predicted as signals of the pairing-phase and shape-phase transitions are reviewed and it is found that they are not actually true phase transitions and it is only an artifact of the mean field models. Since quantal number and spin fluctuations and statistical fluctuations in pair gap, deformation degrees of freedom and energy when incorporated, it wash out the pairing-phase transition and smooth out the shape-phase transition. Phase transitions due to collapse of pair gap and deformation is discussed and a clear picture of pairing-phase transition in light nuclei is presented in which pairing transition is reconciled.展开更多
Transition metal nitrides(TMNs)are considered as viable alternatives to noble metal catalysts owing to their versatile electronic structure and favorable catalytic performance.However,the conventional synthetic proces...Transition metal nitrides(TMNs)are considered as viable alternatives to noble metal catalysts owing to their versatile electronic structure and favorable catalytic performance.However,the conventional synthetic processes for TMNs suffer from high energy consumption and low production yield.In this study,a range of TMNs and their hetero-composite arrays were successfully synthesized via an ultrafast flash Joule heating technology within 0.5 s.As a proof concept,the nitrides and hetero-composites were applied for the electrocatalytic hydrazine oxidation reaction(HzOR),in which the Co_(4)N/Mo_(16)N_(7)arrays shows the best performance with a geometric current density of 100 mA cm^(-2)at 23 mV(vs.reversible hydrogen electrode(RHE)).This work paves a new way for the ultrafast synthesis of TMNs which could meet the ever-increased energy crisis.展开更多
The phase transition of titanium alloys is sensitive to the heat-treatment procedure,accompanied with the latent heat induced by phase transition.However,the latent heat during phase transition of titanium alloy has n...The phase transition of titanium alloys is sensitive to the heat-treatment procedure,accompanied with the latent heat induced by phase transition.However,the latent heat during phase transition of titanium alloy has not been systematically studied,which may result in the gap between designed and actual temperature of the sample and affect the final mechanical properties.In this work,DSC(differential scanning calorimetry)and first-principles simulate methods were used to study theβ→αphase transition process of TB18(Ti–Al-Mo-V-Cr-Nb-Fe system)metastableβtitanium alloy,especially to reveal the influence of the heating rate on latent heat.The ratio of latent heat to endothermic heat of the sample during temperature rising was introduced to interpret the effect of latent heat to actual temperature.The ratio of latent heat to endothermic heat at 1℃/min is about 15 to 20 times higher than that at 10℃/min.The higher ratio indicates that the latent heat of phase transition has a more significant effect on the temperature,which is related to the temperature range of phase transition and theαvolume fraction.Compared with the heating rate of 1℃/min,theβ→αphase transition takes place at higher temperature and the volume fraction ofαis smaller at 10℃/min.Meanwhile,there is a precipitation free zone between grain boundaryαand intragranularαand the distribution ofαlamellae is heterogeneous when the heating rate is 10℃/min.Both of the experimental and theoretical results suggest that the latent heat of phase transition is the main cause of the temperature fluctuation during heat-treatment process.This work has guiding significance for microstructure optimization affected by temperature,to achieve the desired mechanical properties.展开更多
The dissolution behavior of rI phase has been investigated in a cast Ni-based superalloy. The results showed that the platelets and blocks of η phase were formed within the interdendritic regions of the microstructur...The dissolution behavior of rI phase has been investigated in a cast Ni-based superalloy. The results showed that the platelets and blocks of η phase were formed within the interdendritic regions of the microstructure. Applying standard solution annealing at 1150-1160℃ for a period of 4 h did not result in the complete dissolution of η phase. For the complete dissolution of η phase without residual incipient melting, a 2-step solution annealing has been recommended. After dissolution at high tem- peratures, the TI phase transforms to two MC-type carbides: one is enriched in Ti, Nb, and Ta, and the other is of (Zr,Ti)C type.展开更多
基金Projects(51404183,51504177)supported by the National Natural Science Foundation of China。
文摘The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.
文摘Solidification curve of Al 8.5Fe 1.7Si was calculated by thermodynamic models. Phase constitutions of Al 8.5Fe, Al 8.5Fe 1.7Si and Al 8.5Fe 1.7Si 1.3V alloys were analysed at different cooling rates by means of optical microscopy, X ray diffraction, transmission electron microscopy and so on. Microstructures of spraying deposited ingots and their hot processed samples were detected, and the phase transitions during spraying deposition, heating process and hot processing were also studied. The results show that, by spraying deposition, the ideal structures of α (Al) and Al 12 (Fe, V) 3Si can be obtained when cooling rate is above 10 5 K/s; and restraining the formation of Al 8(Fe,V) 2Si/Al 13 Fe 4 can improve the properties of the alloy.
文摘In-situ HVEM observation on phase transition of the YBa_2Cu_3O_(7-x) superconducting compound in pro- cess of heating was carried out,and high temperature X-ray diffraction analysis in air and X-ray diffraction phase analysis for the sample treated in vacuum condition were made.The results showed that the temperature of phase transition is related to oxygen content in the sample and in general,is 100℃ to 120℃ lower in vacu- um condition than in air.At 320℃ to 350℃ twin bands begin to disappear,and some Cu_2O are formed on the surface of the sample and transit from orthorhombic YBa_2Cu_3O_(7-x) to arthorhombic Y_2BaCuO_5 compound. This transition was completed at about 500℃.Above 900℃,this compound consists of the Y_2BaCuO_5, BaCuO_2,Y_2O_3 and some other minor compounds.No phase transition was observed during cooling the sample.
文摘The thawing time of ice and freezed Salomon fish during high pressure assisted thawing process was evaluated by computer simulation using a finite element and the results were compared with those under atmospheric pressure. The apparent specific heat method was adopted to treat the release of latent heat. The effects of different factors on the high pressure assisted thawing process were analyzed. The time reductions of different sample dimensions were estimated and the temperature contour of thawing at different conditions was obtained. The results showed that the temperature gap of phase transition was the main factor, which could shorten the thawing time. Moreover, a second order relationship was obtained between pressure and phase transition time.
基金supported by the National Research Foundation of Korea (NRF-2017R1C1B1005436)the TJ Park Science Fellowship of POSCO TJ Park Foundation
文摘In this article, we study the nonlinear stochastic heat equation in the spatial domain R^d subject to a Gaussian noise which is white in time and colored in space. The spatial correlation can be any symmetric, nonnegative and nonnegative-definite function that satisfies Dalang's condition. We establish the existence and uniqueness of a random field solution starting from measure-valued initial data. We find the upper and lower bounds for the second moment. With these moment bounds, we first establish some necessary and sufficient conditions for the phase transition of the moment Lyapunov exponents, which extends the classical results from the stochastic heat equation on Z^d to that on R^d.Then, we prove a localization result for the intermittency fronts, which extends results by Conus and Khoshnevisan [9] from one space dimension to higher space dimension. The linear case has been recently proved by Huang et al [17] using different techniques.
文摘After laser quenching and tempering of three kinds of annealed tool high-speed steel(W18Cr-4V, W9Mo3Cr4V1, W6Mo5Cr4V2) test samples, the microhardness measurer was used to test the samples and some problems, such as the hardness and depth of hardening-quenching layer were analyzed. Furthermore, after laser quenching and tempering of the quenched and three-time tempered high-speed steel (W18Cr4V) and its hardness analyzing, different results of laser-quenching samples were obtained under different initial heat-treating.
基金Supported by the National Natural Science Foundation of China(No.20673050)Key Project of Science Foundation from Shaanxi Educational College of China(No.08KJ017)
文摘A novel compound-monohydrated zinc nicotinate was prepared via room temperature solid phase synthesis and ball grinding.FTIR,chemical and elemental analyses and X-ray powder diffraction technique were applied to characterizing the structure and composition of the complex.Low-temperature heat capacities of the solid coordination compound were measured by a precision automated adiabatic calorimeter over a temperature range from 77 to 400 K.A solid-solid phase transition process occurred in a temperature range of 321―342 K inferred according to the heat capacity curve,and the peak temperature,molar enthalpy and entropy of the phase transition of monohydrated zinc nicotinate were determined to be Ttrs=(340.584±0.829) K,ΔtrsHm=(12.682±0.041) kJ/mol and ΔtrsSm=(37.235±0.101) KJ/mol).The experimental values of the molar heat capacities in the temperature regions of 77―321 K and 342―400 K were,respectively,fitted to two polynomial equations.In addition,the polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the sample relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K.
基金the National Natural Science Foundation of China(No.20673050).
文摘Low-temperature heat capacities of the solid compound Zn(C4H7O5)2(s) were measured in a temperature range from 78 to 374 K, with an automated adiabatic calorimeter. A solid-to-solid phase transition occurred in the temperature range of 295?322 K. The peak temperature, the enthalpy, and entropy of the phase transition were determined to be (316.269±1.039) K, (11.194±0.335) kJ?mol-1, and (35.391±0.654) J?K-1?mol-1, respectively. The experimental values of the molar heat capacities in the temperature regions of 78?295 K and 322?374 K were fitted to two polynomial equations of heat capacities(Cp,m) with reduced temperatures(X) and [X = f(T)], with the help of the least squares method, respectively. The smoothed molar heat capacities and thermodynamic functions of the compound, relative to that of the standard reference temperature 293.15 K, were calculated on the basis of the fitted polynomials and tabulated with an interval of 5 K. In addition, the possible mechanism of thermal decomposition of the compound was inferred by the result of TG-DTG analysis.
文摘Heat induced in a finite Silver Selenide slab by an external pulsed laser source is studied in dimensionless scale according to hyperbolic heat conduction model (HHCE) using Laplace integral transform technique. The temperature profile, the critical time required to initiate phase transition and that to initiate damage at the front surface are obtained for different pulses and are illustrated graphically.
基金This work was financially supported by the National Natural Science Foundation of China (No.50604002).
文摘The molar heat capacities of La2Mo209 and La1.9Sr0.1MO209-δ were obtained using the differential scanning calorimetry (DSC) technique in a temperature range from 298 to 1473 K. The DSC curve of La2Mo209 showed an endothermal peak around 834 K corresponding to a first-order monoclinic-cubic phase transition, and the enthalpy change accompanying this phase transition is 5.99 kJ/mol. No evident endothermal peak existed in the DSC curve of La1.9Sr0.1MO209-δ, but a broad thermal anomaly existed in its heat capacity curve at around 832 K. In addition, the heat capacity values of La2Mo209 and La1.9Sr0.1MO209-δ began to decrease at 1196 and 1330 K, respectively. The non-transitional heat capacity values of La2Mo209 and La1.9Sr0.1MO209-δ were formulated using multiple regression analysis in two temperature ranges.
文摘This is an improved design based on the existing plate type solar water heaters. It aims at making full use of solar energy. To fully absorb radiation, it absorbs coating selectively by adopting the magnetron sputtering technology AL-N/AL. this design conduct heat through aluminum material which can reduce the cost meanwhile conduct heat effectively. To ensure the quality of the water at the same time improve the utilization rate of solar energy, this design use phase change for second heat exchange. Take Shanghai for example, where this design and heat transfer model are applied, the average efficiency of water heaters can achieve 68%, which has proven the feasibility of the design. In a word, this design can achieve the goal of energy conservation and emissions reduction and has broad market prospects.
文摘The heat and mass transfer characteristics under frosting on surface of heat exchanger were experimentally investigated in different conditions of air temperature, relative humidity, and face velocity. The heat transfer and heat transfer coefficient decreased faster with the high relative humidity, low air temperature and initial face velocity. The air pressure drop rose faster with the high relative humidity and low air velocity.
基金Project supported by the Guangxi Natural Science Foundation(AD20297001,AD20297014)the National Natural Science Foundation of China(51562032)。
文摘The magnetic properties and magnetic phase transition critical behavior of Gd_(3)Ga_5O_(12)single crystals subjected to high-pressure heat treatment were investigated.The results show that high-pressure heat treatment reduces the Curie temperature and magnetization of the sample.Under a magnetic field change of 5 T,the maximum isothermal magnetic entropy of the sample is approximately 19.73 J/(kg·K).High-pressure heat treatment increases the phase transition temperature range and leads to an increase in the magnetic refrigeration power.Both Gd_(3)Ga_(5)O_(12)single crystals and the high-pressure heat-treated sample undergo a second-order phase transition.The critical behavior of the samples aligns with the mean field model acquired via critical model fitting.This indicates that the samples exhibit long-range exchange interactions in the system near the Curie temperature.Thus,this material can be used as a magnetic refrigerant for low-temperature applications.
文摘Heat storage properties of phase change materials(PCMs) are essential characteristics that perform a key role in thermal heat energy storage systems.The thermal properties of PCMs can be improved by developing metal foam/PCM composites.The addition of metal foam in PCMs has a significant effect on the thermal characteristics of PCMs.In this paper,the heat storage properties of two different metal foam/PCM composites were experimentally examined.The behavior of paraffin in metal foam(copper and iron-nickel)/paraffin composites concerning pure paraffin at a constant heat flux of 1000 W/m^(2) in three directions simultaneously(x,y,and z) was studied.Paraffin was infiltrated into copper and iron-nickel foams to develop composite materials which resulted in enhancing the thermal conductivity of the paraffin.A comparative analysis is made on the heat storage properties of paraffin in copper and iron-nickel foams/paraffin composites.Inner temperature distribution during the phase transition process is experimentally evaluated.This comparison indicates that temperature uniformity in copper foam/paraffin composite is better than in iron-nickel foam/paraffin composite and pure paraffin at the same heat flux.Experimental results show that at heat flux of 1000 W/m^(2),the heat storage time for copper foam/paraffin composite is 20.63% of that of iron-nickel foam/paraffin composite.
基金supported by the National Basic Research Program of China(Grant No.2012CB821404)the National Natural Science Foundation of China(Grant Nos.51172166 and 61106005)+1 种基金the National Science Fund for Talent Training in Basic Science,China(Grant No.J1210061)the Doctoral Fund of Ministry of Education of China(Grant No.20110141110007)
文摘We present the temperature-dependent susceptibility and specific heat measurement of spinel ZnV204. The structural transition with orbital ordering and the antiferromagnetic transition with spin ordering were observed at 50 K and 37 K, respectively. By analysis of the hysteresis behavior between the specific heat curves obtained in warming and cooling processes, the structural transition was confirmed to be the first-order transition, while the antiferromagnetic transition was found to be of the second-order type. At the structural transition, the latent heat and entropy change were calculated from the excess specific heat, and the derivative of pressure with respect to temperature was obtained using the Clausius--Clapayron equation. At the magnetic transition, the width of the critical fluctuation region was obtained to be about 0.5 K by comparing with Gaussian fluctuations. In the critical region, the critical behavior was analyzed by using renormalization-group theory. The critical amplitude ratio A+/A- = 1.46, which deviates from the 3D Heisenburg model; while the critical exponent a is -0.011, which is close to the 3D XY model. We proposed that these abnormal critical behaviors can be attributed to strong spin-orbital coupling accompanied with the antiferromagnetic transition. Moreover, in the low temperature range (2-5 K), the Fermi energy, the density of states near the Fermi surface, and the low limit of Debye temperature were estimated to be 2.42 eV, 2.48 eV-1, and 240 K, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674119 and 11690032)the Fundamental Research Funds for the Central Universities,China(HUST:2019JYCXJJ038)X.F.Z.and P.C.C.acknowledge the financial support from the Bird Nest Plan of HUST.
文摘Parity-time (PT) symmetry/anti-parity-time (APT) symmetry in non-Hermitian systems reveal profound physics andspawn intriguing effects. Recently, it has been introduced into diffusive systems together with the concept of exceptionalpoints (EPs) from quantum mechanics and the wave systems. With the aid of convection, we can generate complex thermalconductivity and imitate various wavelike dynamics in heat transfer, where heat flow can be “stopped” or moving against thebackground motion. Non-Hermitian diffusive systems offer us a new platform to investigate the heat wave manipulation.In this review, we first introduce the construction of APT symmetry in a simple double-channel toy model. Then we showthe phase transition around the EP. Finally, we extend the double-channel model to the four-channel one for showing thehigh-order EP and the associated phase transition. In a general conclusion, the phase difference of adjacent channels isalways static in the APT symmetric phase, while it dynamically evolves or oscillates when the APT symmetry is broken.
基金Supported by a Project(No.F.No.36-169/2008(SR)) sanctioned by University Grants Commission,New Delhi,India
文摘Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature statistical approach with main emphasis to fluctuations. The occurrence of a peak structure in the specific heat predicted as signals of the pairing-phase and shape-phase transitions are reviewed and it is found that they are not actually true phase transitions and it is only an artifact of the mean field models. Since quantal number and spin fluctuations and statistical fluctuations in pair gap, deformation degrees of freedom and energy when incorporated, it wash out the pairing-phase transition and smooth out the shape-phase transition. Phase transitions due to collapse of pair gap and deformation is discussed and a clear picture of pairing-phase transition in light nuclei is presented in which pairing transition is reconciled.
基金supported by the National Natural Science Foundation of China(22375001)the Natural Science Foundation of Anhui Province(2208085Y03,2208085QB30)+2 种基金the University Synergy Innovation Program of Anhui Province(GXXT-2023-036)the Key Scientific Research Foundation of the Education Department of Anhui Province(2023AH050113)the Start-up Grant from Anhui University。
文摘Transition metal nitrides(TMNs)are considered as viable alternatives to noble metal catalysts owing to their versatile electronic structure and favorable catalytic performance.However,the conventional synthetic processes for TMNs suffer from high energy consumption and low production yield.In this study,a range of TMNs and their hetero-composite arrays were successfully synthesized via an ultrafast flash Joule heating technology within 0.5 s.As a proof concept,the nitrides and hetero-composites were applied for the electrocatalytic hydrazine oxidation reaction(HzOR),in which the Co_(4)N/Mo_(16)N_(7)arrays shows the best performance with a geometric current density of 100 mA cm^(-2)at 23 mV(vs.reversible hydrogen electrode(RHE)).This work paves a new way for the ultrafast synthesis of TMNs which could meet the ever-increased energy crisis.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010101)the National Key Research and Development Program of China(2021YFC2801801)+1 种基金the CAS Project for Young Scientists in Basic Research(YSBR-025),the Natural Science Foundation of China(51871225)the Youth Innovation Promotion Association CAS and Liaoning Revitalization Talents Program(XLYC1907005).
文摘The phase transition of titanium alloys is sensitive to the heat-treatment procedure,accompanied with the latent heat induced by phase transition.However,the latent heat during phase transition of titanium alloy has not been systematically studied,which may result in the gap between designed and actual temperature of the sample and affect the final mechanical properties.In this work,DSC(differential scanning calorimetry)and first-principles simulate methods were used to study theβ→αphase transition process of TB18(Ti–Al-Mo-V-Cr-Nb-Fe system)metastableβtitanium alloy,especially to reveal the influence of the heating rate on latent heat.The ratio of latent heat to endothermic heat of the sample during temperature rising was introduced to interpret the effect of latent heat to actual temperature.The ratio of latent heat to endothermic heat at 1℃/min is about 15 to 20 times higher than that at 10℃/min.The higher ratio indicates that the latent heat of phase transition has a more significant effect on the temperature,which is related to the temperature range of phase transition and theαvolume fraction.Compared with the heating rate of 1℃/min,theβ→αphase transition takes place at higher temperature and the volume fraction ofαis smaller at 10℃/min.Meanwhile,there is a precipitation free zone between grain boundaryαand intragranularαand the distribution ofαlamellae is heterogeneous when the heating rate is 10℃/min.Both of the experimental and theoretical results suggest that the latent heat of phase transition is the main cause of the temperature fluctuation during heat-treatment process.This work has guiding significance for microstructure optimization affected by temperature,to achieve the desired mechanical properties.
文摘The dissolution behavior of rI phase has been investigated in a cast Ni-based superalloy. The results showed that the platelets and blocks of η phase were formed within the interdendritic regions of the microstructure. Applying standard solution annealing at 1150-1160℃ for a period of 4 h did not result in the complete dissolution of η phase. For the complete dissolution of η phase without residual incipient melting, a 2-step solution annealing has been recommended. After dissolution at high tem- peratures, the TI phase transforms to two MC-type carbides: one is enriched in Ti, Nb, and Ta, and the other is of (Zr,Ti)C type.