Premixed and partially premixed flames (PPFs) of H2/CO/air syngas are studied numerically to investigate the effect of pressure on syngas PPF structure. Chemical characteristics of the syngas flame at different pressu...Premixed and partially premixed flames (PPFs) of H2/CO/air syngas are studied numerically to investigate the effect of pressure on syngas PPF structure. Chemical characteristics of the syngas flame at different pressures are investigated based on reaction limit analysis using a one-dimensional configuration. The results show that CO affects the syngas reaction limits through both physical effects that consist mainly in dilution and chemical effects that are related to both R23 (CO+OH=CO2+H) and HCO pathway. In particular, the HCO pathway weakens the flame at low pressures due to the chain-terminating effect of R25 (HCO+O2=CO+HO2) and R26 (HCO+H=CO+H2), and enhances the flame at high pressures because of the contribution of R25 to the HO2chain-branching process. These CO chemical characteristics are also observed in the premixed zone of 50%H2+50%CO syngas PPFs whereas only R23 is important in the non-premixed zone.展开更多
Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge tradi...Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge traditional modeling approaches. The kinetics of chemical reactions in groundwater are well known to be controlled by medium heterogeneity and reactant mixing, motivating the development of particle-based Lagrangian approaches. Previous Lagrangian solvers have been limited to fundamental bimolecular reactions in typically one-dimensional porous media. In contrast to other existing studies, this study developed a fully Lagrangian framework, which was used to simulate diffusion-controlled, multi-step reactions in one-, two-, and three-dimensional porous media. The interaction radius of a reactant molecule, which controls the probability of reaction, was derived by the agent-based approach for both irreversible and reversible reactions. A flexible particle tracking scheme was then developed to build trajectories for particles undergoing mixing-limited, multi-step reactions. The simulated particle dynamics were checked against the kinetics for diffusion-controlled reactions and thermodynamic wellmixed reactions in one-and two-dimensional domains. Applicability of the novel simulator was further tested by(1) simulating precipitation of calcium carbonate minerals in a two-dimensional medium, and(2) quantifying multi-step chemical reactions observed in the laboratory. The flexibility of the Lagrangian simulator allows further refinement to capture complex transport affecting chemical mixing and hence reactions.展开更多
To more comprehensively analyze the effect of CO_2 and H_2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO_2 and H_2O using high temperature gas–solid reaction appar...To more comprehensively analyze the effect of CO_2 and H_2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO_2 and H_2O using high temperature gas–solid reaction apparatus over the range of 950–1250°C were studied, and the thermodynamic and kinetic analyses were also performed. The results show that the average reaction rate of coke with H_2O is about 1.3–6.5 times that with CO_2 in the experimental temperature range. At the same temperature, the endothermic effect of coke with H_2O is less than that with CO_2. As the pressure increases, the gasification dissolution reaction of coke shifts to the high-temperature zone. The use of hydrogen-rich fuels is conducive to decreasing the energy consumed inside the blast furnace, and a corresponding high-pressure operation will help to suppress the gasification dissolution reaction of coke and reduce its deterioration. The interfacial chemical reaction is the main rate-limiting step over the experimental temperature range. The activation energies of the reaction of coke with CO_2 and H_2O are 169.23 kJ ·mol-1 and 87.13 kJ·mol^(-1), respectively. Additionally, water vapor is more likely to diffuse into the coke interior at a lower temperature and thus aggravates the deterioration of coke in the middle upper part of blast furnace.展开更多
Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on ...Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on the kinetics of fuidization reduction of iron ore powder under low-temperature conditions ranging from 783 to 903 K was investigated to describe the fluidization reduction rate of iron ore powder from three aspects:microstructure change,reaction limiting link,and apparent activation energy of the reaction,exploring their internal correlation.The experimental results revealed that in a temperature range of 783-813 K,the formation of a dense iron layer hindered the internal diffusion of reducing gas,resulting in relatively high gas diffusion resistance.In addition,due to the differences in limiting links and reaction pathways in the intermediate stage of reduction,the apparent activation energy of the reaction varied.The apparent activation energy of the reaction ranged from 23.36 to 89.13 kJ/mol at temperature ranging from 783 to 813 K,while it ranged from 14.30 to 68.34 kJ/mol at temperature ranging from 873 to 903 K.展开更多
Existing explanations for several major phenomena in physics may need to be reconsidered in light of the description of a natural force termed KELEA (kinetic energy limiting electrostatic attraction). Three examples a...Existing explanations for several major phenomena in physics may need to be reconsidered in light of the description of a natural force termed KELEA (kinetic energy limiting electrostatic attraction). Three examples are selected for discussion in this paper: i) The proposed wave-particle duality of electrons;ii) cold fusion;and iii) superconductivity. The current interpretations of these enigmatic concepts are incomplete and not fully validated by scientific methods. The observations underlying these processes are seemingly consistent with KELEA acting as a repelling force between opposite electrical charges. Relatively simple experiments can be designed to either confirm or exclude KELEA in these and in various other currently perplexing physical phenomena.展开更多
基金supported by the National Key Basic Research Program of China(2014CB239603)the National Natural Science Foundation of China(U1738113,91441131)
文摘Premixed and partially premixed flames (PPFs) of H2/CO/air syngas are studied numerically to investigate the effect of pressure on syngas PPF structure. Chemical characteristics of the syngas flame at different pressures are investigated based on reaction limit analysis using a one-dimensional configuration. The results show that CO affects the syngas reaction limits through both physical effects that consist mainly in dilution and chemical effects that are related to both R23 (CO+OH=CO2+H) and HCO pathway. In particular, the HCO pathway weakens the flame at low pressures due to the chain-terminating effect of R25 (HCO+O2=CO+HO2) and R26 (HCO+H=CO+H2), and enhances the flame at high pressures because of the contribution of R25 to the HO2chain-branching process. These CO chemical characteristics are also observed in the premixed zone of 50%H2+50%CO syngas PPFs whereas only R23 is important in the non-premixed zone.
基金supported by the National Natural Science Foundation of China(Grants No.41330632,41628202,and 11572112)
文摘Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge traditional modeling approaches. The kinetics of chemical reactions in groundwater are well known to be controlled by medium heterogeneity and reactant mixing, motivating the development of particle-based Lagrangian approaches. Previous Lagrangian solvers have been limited to fundamental bimolecular reactions in typically one-dimensional porous media. In contrast to other existing studies, this study developed a fully Lagrangian framework, which was used to simulate diffusion-controlled, multi-step reactions in one-, two-, and three-dimensional porous media. The interaction radius of a reactant molecule, which controls the probability of reaction, was derived by the agent-based approach for both irreversible and reversible reactions. A flexible particle tracking scheme was then developed to build trajectories for particles undergoing mixing-limited, multi-step reactions. The simulated particle dynamics were checked against the kinetics for diffusion-controlled reactions and thermodynamic wellmixed reactions in one-and two-dimensional domains. Applicability of the novel simulator was further tested by(1) simulating precipitation of calcium carbonate minerals in a two-dimensional medium, and(2) quantifying multi-step chemical reactions observed in the laboratory. The flexibility of the Lagrangian simulator allows further refinement to capture complex transport affecting chemical mixing and hence reactions.
基金financially supported by the National Natural Science Foundation of China (No. 51474002)the National Science Foundation for Young Scientists of China (No. 51304014)the Yong Elite Scientists Sponsorship Program by CAST (No. 2017QNRC001)
文摘To more comprehensively analyze the effect of CO_2 and H_2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO_2 and H_2O using high temperature gas–solid reaction apparatus over the range of 950–1250°C were studied, and the thermodynamic and kinetic analyses were also performed. The results show that the average reaction rate of coke with H_2O is about 1.3–6.5 times that with CO_2 in the experimental temperature range. At the same temperature, the endothermic effect of coke with H_2O is less than that with CO_2. As the pressure increases, the gasification dissolution reaction of coke shifts to the high-temperature zone. The use of hydrogen-rich fuels is conducive to decreasing the energy consumed inside the blast furnace, and a corresponding high-pressure operation will help to suppress the gasification dissolution reaction of coke and reduce its deterioration. The interfacial chemical reaction is the main rate-limiting step over the experimental temperature range. The activation energies of the reaction of coke with CO_2 and H_2O are 169.23 kJ ·mol-1 and 87.13 kJ·mol^(-1), respectively. Additionally, water vapor is more likely to diffuse into the coke interior at a lower temperature and thus aggravates the deterioration of coke in the middle upper part of blast furnace.
基金The authors gratefully acknowledge financial support by the National Natural Science Foundation of China-Xinjiang Joint Fund(U2003124)the National Natural Science Foundation of China(No.51974001)the University Outstanding Young Talents Funding Program(No.gxyq2019016).
文摘Due to the instability of FeO at temperatures below 843 K,the fuidization reduction pathway of iron ore powder changes with the reduction temperature.Thus,the effect of temperature and reaction pathway interaction on the kinetics of fuidization reduction of iron ore powder under low-temperature conditions ranging from 783 to 903 K was investigated to describe the fluidization reduction rate of iron ore powder from three aspects:microstructure change,reaction limiting link,and apparent activation energy of the reaction,exploring their internal correlation.The experimental results revealed that in a temperature range of 783-813 K,the formation of a dense iron layer hindered the internal diffusion of reducing gas,resulting in relatively high gas diffusion resistance.In addition,due to the differences in limiting links and reaction pathways in the intermediate stage of reduction,the apparent activation energy of the reaction varied.The apparent activation energy of the reaction ranged from 23.36 to 89.13 kJ/mol at temperature ranging from 783 to 813 K,while it ranged from 14.30 to 68.34 kJ/mol at temperature ranging from 873 to 903 K.
文摘Existing explanations for several major phenomena in physics may need to be reconsidered in light of the description of a natural force termed KELEA (kinetic energy limiting electrostatic attraction). Three examples are selected for discussion in this paper: i) The proposed wave-particle duality of electrons;ii) cold fusion;and iii) superconductivity. The current interpretations of these enigmatic concepts are incomplete and not fully validated by scientific methods. The observations underlying these processes are seemingly consistent with KELEA acting as a repelling force between opposite electrical charges. Relatively simple experiments can be designed to either confirm or exclude KELEA in these and in various other currently perplexing physical phenomena.