BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychologi...BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychological problems.AIM To investigate the effectiveness of the initial check,information exchange,final accuracy check,reaction(IIFAR)information care model on the mental health status of elderly patients with lung cancer.METHODS This study is a single-centre study.We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022.These elderly patients with lung cancer were randomly divided into two groups,with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol.The differences in psychological distress,anxiety and depression,life quality,fatigue,and the locus of control in psychology were compared between these two groups,and the causes of psychological distress were analyzed.RESULTS After the intervention,Distress Thermometer,Hospital Anxiety and Depression Scale(HADS)for anxiety and the HADS for depression,Revised Piper’s Fatigue Scale,and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group(P<0.05).After the intervention,Quality of Life Questionnaire Core 30(QLQ-C30),Internal Health Locus of Control,and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group,and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group(P<0.05).CONCLUSION The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression,psychological distress,and fatigue,improving their tendencies on the locus of control in psychology,and enhancing their life qualities.展开更多
IN the process of forecasts, analyses and numerical treatments of the ground water resource, we often meet with various chemical reaction models. One type of them is three kinds of chemical substance M<sub>1<...IN the process of forecasts, analyses and numerical treatments of the ground water resource, we often meet with various chemical reaction models. One type of them is three kinds of chemical substance M<sub>1</sub>, M<sub>2</sub> and M<sub>3</sub> which can react with each other to produce two new kinds of other chemical compounds: (M<sub>2</sub>)<sub>n</sub> (M<sub>1</sub>)<sub>m</sub> and (M<sub>3</sub>)<sub>r</sub> (M<sub>1</sub>)<sub>κ</sub> at the same time. Usually, these reactions are irreversible and they have the following forms:展开更多
Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignitio...Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignition-Growth reaction rate model,which can describe the shock initiation processes of explosives with different initial densities,particle sizes and loading pressures by only one set of model parameters.Compared with the Lee-Tarver reaction rate model,the new Ignition-Growth reaction rate model describes better the shock initiation process of explosives and requires fewer model parameters.Moreover,the shock initiation of a 2,4-Dinitroanisole(DNAN)-based melt-cast explosive RDA-2(DNAN/HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine)/aluminum)are investigated both experimentally and numerically.A series of shock initiation experiments is performed with manganin piezoresistive pressure gauges and corresponding numerical simulations are carried out with the new Ignition-Growth reaction rate model.The RDA-2 explosive is found to have higher critical initiation pressure and lower shock sensitivity than traditional explosives(such as the Comp.B explosive).The calibrated reaction rate model parameters of RDA-2 could provide numerical basis for its further application.展开更多
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s...To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.展开更多
Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain ...Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain some authors' results known. Secondly, by using a series of transformations, the model is reduced into a nonlinear reaction diffusion equation and then through using sine-cosine method, more exact solutions are found which contain soliton solutions.展开更多
A mathematical mechanism of the n-pentane pyrolysis process based on free radical reaction model was presented.The kinetic parameters of n-pentane pyrolysis are obtained by quantum chemistry and the reaction network i...A mathematical mechanism of the n-pentane pyrolysis process based on free radical reaction model was presented.The kinetic parameters of n-pentane pyrolysis are obtained by quantum chemistry and the reaction network is established. The solution of the stiff ordinary differential equations in the n-pentane pyrolysis model is completed by semi implicit Eular algorithm. Then the pyrolysis mechanism based on free radical reaction model is built,and the computational efficiency increases 10 times by algorithm optimization. The validity of this model and its solution method is confirmed by the experimental results of n-pentane pyrolysis.展开更多
The adsorption of pentachlorophenol (PCP) onto quartz, kaolinite, illite, montmorillonite and iron oxides has been investigated by batch equilibrium techniques. The pH-dependent isotherms are curves with peak values...The adsorption of pentachlorophenol (PCP) onto quartz, kaolinite, illite, montmorillonite and iron oxides has been investigated by batch equilibrium techniques. The pH-dependent isotherms are curves with peak values, the position of which is at about pH = 5-6 depending on the mineral species. Based on distribution of both speciation of surface hydroxyls on minerals and PCP in solution a surface reaction model involving surface complexation and surface electrostatic attraction is presented to fit the pH-dependent isotherms, and both reaction constants are calculated. The results show that on quartz and phyllosilicate minerals the predominant adsorption reaction is surface complexation, meanwhile both of surface electrostatic attraction and surface complexation are involved on the iron oxide minerals. The reaction constants of surface electrostatic adsorption are usually one to three orders in magnitude, larger than that of surface complexation. The concentration-dependent isotherms can be well fitted by Langmnir equation with the correlation coefficient R〉0.93 for kaolinite and iron oxides. The maximum adsorption is found in the order: hematite 〉 lepidocrocite 〉 goethite 〉 kaolinite 〉 quartz 〉 montmorillonite ≈ illite, which can be interpreted by consideration of both reaction mechanism and surface hydroxyl density. The significant adsorption of PCP onto mineral surfaces suggests that clay and iron oxide minerals will play an important role as HIOCs are adsorbed in laterite or latertoid soil, which is widespread in South China.展开更多
Through a survey of the literature on geology, hydrogeology and hydrogeochemistry, this paper presents a hydrogeochemical model for the groundwater system in a dross-dumping area of the Shandong Aluminium Plant. It is...Through a survey of the literature on geology, hydrogeology and hydrogeochemistry, this paper presents a hydrogeochemical model for the groundwater system in a dross-dumping area of the Shandong Aluminium Plant. It is considered that the groundwater-bearing medium is a mineral aggregate and that the interactions between groundwater and the groundwater-bearing medium can be described as a series of geochemical reactions. On that basis, the principle of minimum energy and the equations of mass balance, electron balance and electric neutrality are applied to construct a linear programming mathematical model for the calculation of mass transfer between water and rock with the simplex method.展开更多
A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusio...A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H20 and 02 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption.展开更多
The operator-splitting methods for the mathematic model of one kind of oin reactions for the problem of groundwater are considered.Optimal error estimates in L 2 and H 1 norm are obtained for the approximation solut...The operator-splitting methods for the mathematic model of one kind of oin reactions for the problem of groundwater are considered.Optimal error estimates in L 2 and H 1 norm are obtained for the approximation solution.展开更多
A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experimen...A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component,and the mesoscopic model is validated against the experimental data.Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.展开更多
A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to sim...A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to simulate the course of the photonuclear reaction within the IQMD frame is described to study the photo- absorption cross section and π meson production, and the simulation results are compared with some available experimental data as well as the Giessen Boltzmann-Uehling-Uhlenbeck model.展开更多
The treatment of a multicomponent reversible reaction network is extremely complicated because largenumber of rate constants must be precisely determined and because the calculation based on these rateconstants is ted...The treatment of a multicomponent reversible reaction network is extremely complicated because largenumber of rate constants must be precisely determined and because the calculation based on these rateconstants is tedious.In order to reduce the degrees of freedom of the process,the authors propose a methodin which the reactor and the separator are regarded as a whole.Based on this approach,an N-componentreversible reaction system can be dealt with as a two—component system.Consequently,a simple and ac-cessible way of the apparent rate determination is suggested.For fiist-order reactions,an explicit,simplifiedexpression has been derived for both lumped and distributed parameter reaction systems.展开更多
By using fluid dynamics theory with the effects of adsorption and reaction, the chromatography model with a reaction A →B was established as a system of two hyperbolic partial differential equations (PDE’s)....By using fluid dynamics theory with the effects of adsorption and reaction, the chromatography model with a reaction A →B was established as a system of two hyperbolic partial differential equations (PDE’s). In some practical situations, the reaction chromatography model was simplified a semi-coupled system of two linear hyperbolic PDE’s. In which, the reactant concentration wave model was the initial-boundary value problem of a self-closed hyperbolic PDE, while the resultant concentration wave model was the initial-boundary value problem of hyperbolic PDE coupling reactant concentration. The general explicit expressions for the concentration wave of the reactants and resultants were derived by Laplace transform. The δ-pulse and wide pulse injections were taken as the examples to discuss detailedly, and then the stability analysis between the resultant solutions of the two modes of pulse injection was further discussed. It was significant for further analysis of chromatography, optimizing chromatographic separation, determining the physical and chemical characters.展开更多
The mathematical model for the thermokinetics of irreversible consecutive first order reactions has been suggested,which was used for the calculation of rate constants and molar enthalpies of the two consecutive steps...The mathematical model for the thermokinetics of irreversible consecutive first order reactions has been suggested,which was used for the calculation of rate constants and molar enthalpies of the two consecutive steps.And its validity has been verified by the ex- perimental results.展开更多
Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,ta...Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,taking into account the average electron energy,this work establishes a fluid chemical reaction model to simulate and study the course of evolution of a streamer discharge in a 5 mm rod–plate gap,considering 12 particles and 27 chemical reactions.It introduces the electron energy drift diffusion equation into the control equation,and analyzes the temporal and spatial changes of average electron energy,electric field intensity and electron density with change in rod radius and voltage.The effects of voltage and rod radius on the course of streamer discharge can be reflected more comprehensively by combining the average electron energies.Three different values of 0.3 mm,0.4 mm and 0.5 mm are set for the rod radius,and three different values of 5 k V,6 k V and 7 k V are set for the voltage.The influence of an excitation reaction on the streamer discharge is studied.The findings indicate that,as voltage raises,the streamer head’s electron density,electric field and average electron energy all rise,and the streamer develops more quickly.When the rod radius increases,the electron density,electric field and average electron energy of the streamer head all decrease,and the streamer’s evolution slows down.When an excitation reaction is added to the model,the average electron energy,the magnitude of the electric field and the density of electrons decrease,and the evolution of the streamer slows down.An increase in average electron energy will lead to an increase in electric field strength and electron density,and the development of the streamer will be faster.展开更多
To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers re...To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers resemble those of the bulk-initiated polymers. Through a Monte Carlo simulation using a heterogeneous stochastic reaction model, it was discovered that the bulk-initiated polymers exhibit a higher molecular weight and a lower dispersity than the corresponding surface-initiated polymers, which indicates that the equivalent assumption is invalid. Furthermore, the molecular weight distributions of the two types of polymers are also different, suggesting different polymerization mechanisms. The results can be simply explained by the heterogeneous distributions of reactants in the system. This study is helpful to better understand surface-initiated polymerization.展开更多
Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the ac...Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the activation mechanism of zinc in Al-Zn alloys is achieved. There are three intermediates in the dissolution process: Znad^+, Znad^2+ and Alad^+, ,of which only Zni can activate Al-Zn alloys. Most Znnd^+ is produced by β-phase,and the alloys with 2. 3% - 3. 8% (wt) Zn dissolve rapidly. The Al-Zn alloys of heart-shaped EIS are active in 3% NaCl solution, thus EIS characteristic can be used to distinguish the activa-tion of Al-Zn alloys.展开更多
In this work,we explore the use of an iterative Bayesian Monte Carlo(iBMC)method for nuclear data evaluation within a TALYS Evaluated Nuclear Data Library(TENDL)framework.The goal is to probe the model and parameter s...In this work,we explore the use of an iterative Bayesian Monte Carlo(iBMC)method for nuclear data evaluation within a TALYS Evaluated Nuclear Data Library(TENDL)framework.The goal is to probe the model and parameter space of the TALYS code system to find the optimal model and parameter sets that reproduces selected experimental data.The method involves the simultaneous variation of many nuclear reaction models as well as their parameters included in the TALYS code.The‘best’model set with its parameter set was obtained by comparing model calculations with selected experimental data.Three experimental data types were used:(1)reaction cross sections,(2)residual production cross sections,and(3)the elastic angular distributions.To improve our fit to experimental data,we update our‘best’parameter set—the file that maximizes the likelihood function—in an iterative fashion.Convergence was determined by monitoring the evolution of the maximum likelihood estimate(MLE)values and was considered reached when the relative change in the MLE for the last two iterations was within 5%.Once the final‘best’file is identified,we infer parameter uncertainties and covariance information to this file by varying model parameters around this file.In this way,we ensured that the parameter distributions are centered on our evaluation.The proposed method was applied to the evaluation of p+^(59)Co between 1 and 100 MeV.Finally,the adjusted files were compared with experimental data from the EXFOR database as well as with evaluations from the TENDL-2019,JENDL/He-2007 and JENDL-4.0/HE nuclear data libraries.展开更多
文摘BACKGROUND As one of the fatal diseases with high incidence,lung cancer has seriously endangered public health and safety.Elderly patients usually have poor self-care and are more likely to show a series of psychological problems.AIM To investigate the effectiveness of the initial check,information exchange,final accuracy check,reaction(IIFAR)information care model on the mental health status of elderly patients with lung cancer.METHODS This study is a single-centre study.We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022.These elderly patients with lung cancer were randomly divided into two groups,with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol.The differences in psychological distress,anxiety and depression,life quality,fatigue,and the locus of control in psychology were compared between these two groups,and the causes of psychological distress were analyzed.RESULTS After the intervention,Distress Thermometer,Hospital Anxiety and Depression Scale(HADS)for anxiety and the HADS for depression,Revised Piper’s Fatigue Scale,and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group(P<0.05).After the intervention,Quality of Life Questionnaire Core 30(QLQ-C30),Internal Health Locus of Control,and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group,and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group(P<0.05).CONCLUSION The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression,psychological distress,and fatigue,improving their tendencies on the locus of control in psychology,and enhancing their life qualities.
文摘IN the process of forecasts, analyses and numerical treatments of the ground water resource, we often meet with various chemical reaction models. One type of them is three kinds of chemical substance M<sub>1</sub>, M<sub>2</sub> and M<sub>3</sub> which can react with each other to produce two new kinds of other chemical compounds: (M<sub>2</sub>)<sub>n</sub> (M<sub>1</sub>)<sub>m</sub> and (M<sub>3</sub>)<sub>r</sub> (M<sub>1</sub>)<sub>κ</sub> at the same time. Usually, these reactions are irreversible and they have the following forms:
基金supported by the Innovative Group of Material and Structure Impact Dynamics(Grant No.11521062)。
文摘Accurately predicting reactive flow is a challenge when characterizing an explosive under external shock stimuli as the shock initiation time is on the order of a microsecond.The present study constructs a new Ignition-Growth reaction rate model,which can describe the shock initiation processes of explosives with different initial densities,particle sizes and loading pressures by only one set of model parameters.Compared with the Lee-Tarver reaction rate model,the new Ignition-Growth reaction rate model describes better the shock initiation process of explosives and requires fewer model parameters.Moreover,the shock initiation of a 2,4-Dinitroanisole(DNAN)-based melt-cast explosive RDA-2(DNAN/HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine)/aluminum)are investigated both experimentally and numerically.A series of shock initiation experiments is performed with manganin piezoresistive pressure gauges and corresponding numerical simulations are carried out with the new Ignition-Growth reaction rate model.The RDA-2 explosive is found to have higher critical initiation pressure and lower shock sensitivity than traditional explosives(such as the Comp.B explosive).The calibrated reaction rate model parameters of RDA-2 could provide numerical basis for its further application.
基金funding from the Paul ScherrerInstitute,Switzerland through the NES/GFA-ABE Cross Project。
文摘To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.
基金国家自然科学基金,NKBRD of China,Doctor Foundation of Education Commission of China
文摘Firstly, using the improved homogeneous balance method, an auto-Darboux transformation (ADT) for the Brusselator reaction diffusion model is found. Based on the ADT, several exact solutions are obtained which contain some authors' results known. Secondly, by using a series of transformations, the model is reduced into a nonlinear reaction diffusion equation and then through using sine-cosine method, more exact solutions are found which contain soliton solutions.
文摘A mathematical mechanism of the n-pentane pyrolysis process based on free radical reaction model was presented.The kinetic parameters of n-pentane pyrolysis are obtained by quantum chemistry and the reaction network is established. The solution of the stiff ordinary differential equations in the n-pentane pyrolysis model is completed by semi implicit Eular algorithm. Then the pyrolysis mechanism based on free radical reaction model is built,and the computational efficiency increases 10 times by algorithm optimization. The validity of this model and its solution method is confirmed by the experimental results of n-pentane pyrolysis.
基金the National Natural Science Foundation of China (grant No. 40373045) the Natural Science Foundation of Guangdong Province, China (grant No. 030461) the Chinese Academy of Sciences Innovation Project (GIGCX-04-02).
文摘The adsorption of pentachlorophenol (PCP) onto quartz, kaolinite, illite, montmorillonite and iron oxides has been investigated by batch equilibrium techniques. The pH-dependent isotherms are curves with peak values, the position of which is at about pH = 5-6 depending on the mineral species. Based on distribution of both speciation of surface hydroxyls on minerals and PCP in solution a surface reaction model involving surface complexation and surface electrostatic attraction is presented to fit the pH-dependent isotherms, and both reaction constants are calculated. The results show that on quartz and phyllosilicate minerals the predominant adsorption reaction is surface complexation, meanwhile both of surface electrostatic attraction and surface complexation are involved on the iron oxide minerals. The reaction constants of surface electrostatic adsorption are usually one to three orders in magnitude, larger than that of surface complexation. The concentration-dependent isotherms can be well fitted by Langmnir equation with the correlation coefficient R〉0.93 for kaolinite and iron oxides. The maximum adsorption is found in the order: hematite 〉 lepidocrocite 〉 goethite 〉 kaolinite 〉 quartz 〉 montmorillonite ≈ illite, which can be interpreted by consideration of both reaction mechanism and surface hydroxyl density. The significant adsorption of PCP onto mineral surfaces suggests that clay and iron oxide minerals will play an important role as HIOCs are adsorbed in laterite or latertoid soil, which is widespread in South China.
文摘Through a survey of the literature on geology, hydrogeology and hydrogeochemistry, this paper presents a hydrogeochemical model for the groundwater system in a dross-dumping area of the Shandong Aluminium Plant. It is considered that the groundwater-bearing medium is a mineral aggregate and that the interactions between groundwater and the groundwater-bearing medium can be described as a series of geochemical reactions. On that basis, the principle of minimum energy and the equations of mass balance, electron balance and electric neutrality are applied to construct a linear programming mathematical model for the calculation of mass transfer between water and rock with the simplex method.
基金supported partially by Japan Society for the Promotion of Science(JSPS)KAKENHI(No.26249015)
文摘A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H20 and 02 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption.
基金the National Sciences Foundation of China and the Doctorial Program of Higher Edua-tion
文摘The operator-splitting methods for the mathematic model of one kind of oin reactions for the problem of groundwater are considered.Optimal error estimates in L 2 and H 1 norm are obtained for the approximation solution.
基金the National Natural Science Foundation of China(Grant No.11772056)the NSAF Joint Fund(Grants No.U1630113)and the Innovative Group of Material and Structure Impact Dynamics(Grant No.11521062)。
文摘A melt-cast Duan-Zhang-Kim(DZK)mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism.A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component,and the mesoscopic model is validated against the experimental data.Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11421505 and 11220101005the National Basic Research Program of China under Grant No 2014CB845401the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB16
文摘A photonuclear reaction transport model based on an isospin-dependent quantum molecular dynamics model (IQMD) is presented in the intermediate energy region, which is named as GiQMD in this study. Methodology to simulate the course of the photonuclear reaction within the IQMD frame is described to study the photo- absorption cross section and π meson production, and the simulation results are compared with some available experimental data as well as the Giessen Boltzmann-Uehling-Uhlenbeck model.
文摘The treatment of a multicomponent reversible reaction network is extremely complicated because largenumber of rate constants must be precisely determined and because the calculation based on these rateconstants is tedious.In order to reduce the degrees of freedom of the process,the authors propose a methodin which the reactor and the separator are regarded as a whole.Based on this approach,an N-componentreversible reaction system can be dealt with as a two—component system.Consequently,a simple and ac-cessible way of the apparent rate determination is suggested.For fiist-order reactions,an explicit,simplifiedexpression has been derived for both lumped and distributed parameter reaction systems.
文摘By using fluid dynamics theory with the effects of adsorption and reaction, the chromatography model with a reaction A →B was established as a system of two hyperbolic partial differential equations (PDE’s). In some practical situations, the reaction chromatography model was simplified a semi-coupled system of two linear hyperbolic PDE’s. In which, the reactant concentration wave model was the initial-boundary value problem of a self-closed hyperbolic PDE, while the resultant concentration wave model was the initial-boundary value problem of hyperbolic PDE coupling reactant concentration. The general explicit expressions for the concentration wave of the reactants and resultants were derived by Laplace transform. The δ-pulse and wide pulse injections were taken as the examples to discuss detailedly, and then the stability analysis between the resultant solutions of the two modes of pulse injection was further discussed. It was significant for further analysis of chromatography, optimizing chromatographic separation, determining the physical and chemical characters.
文摘The mathematical model for the thermokinetics of irreversible consecutive first order reactions has been suggested,which was used for the calculation of rate constants and molar enthalpies of the two consecutive steps.And its validity has been verified by the ex- perimental results.
基金supported in part by China Postdoctoral Science Foundation(No.2022MD723833)Natural Science Basic Research Program of Shaanxi Province(No.2023-JCYB-349)Young Elite Scientists Sponsorship Program by CSEE(No.JLB-2022-91)。
文摘Streamer discharge is the inaugural stage of gas discharge,and the average electron energy directly determines the electron collision reaction rate,which is a key parameter for studying streamer discharge.Therefore,taking into account the average electron energy,this work establishes a fluid chemical reaction model to simulate and study the course of evolution of a streamer discharge in a 5 mm rod–plate gap,considering 12 particles and 27 chemical reactions.It introduces the electron energy drift diffusion equation into the control equation,and analyzes the temporal and spatial changes of average electron energy,electric field intensity and electron density with change in rod radius and voltage.The effects of voltage and rod radius on the course of streamer discharge can be reflected more comprehensively by combining the average electron energies.Three different values of 0.3 mm,0.4 mm and 0.5 mm are set for the rod radius,and three different values of 5 k V,6 k V and 7 k V are set for the voltage.The influence of an excitation reaction on the streamer discharge is studied.The findings indicate that,as voltage raises,the streamer head’s electron density,electric field and average electron energy all rise,and the streamer develops more quickly.When the rod radius increases,the electron density,electric field and average electron energy of the streamer head all decrease,and the streamer’s evolution slows down.When an excitation reaction is added to the model,the average electron energy,the magnitude of the electric field and the density of electrons decrease,and the evolution of the streamer slows down.An increase in average electron energy will lead to an increase in electric field strength and electron density,and the development of the streamer will be faster.
基金financially supported by the National Natural Science Foundation of China (No.22263002)the “Overseas 100 Talents Program” of Guangxi Higher Education。
文摘To better characterize the properties of surface-initiated polymers, simultaneous bulk-and surface-initiated polymerizations are usually carried out by assuming that the properties of the surface-initiated polymers resemble those of the bulk-initiated polymers. Through a Monte Carlo simulation using a heterogeneous stochastic reaction model, it was discovered that the bulk-initiated polymers exhibit a higher molecular weight and a lower dispersity than the corresponding surface-initiated polymers, which indicates that the equivalent assumption is invalid. Furthermore, the molecular weight distributions of the two types of polymers are also different, suggesting different polymerization mechanisms. The results can be simply explained by the heterogeneous distributions of reactants in the system. This study is helpful to better understand surface-initiated polymerization.
基金National Natural Science Foundation of China(Nos.51204147,51274175,51574206,51574207)Program for International S&T Cooperation Projects of China(No.2014DFA50320)+1 种基金Program for International S&T Cooperation Projects of Shanxi Province(No.201381017)Technological Projects of Shanxi Province(No.20150313002-3)
文摘Electrochemical impendence spectroscopy (EIS) is applied to investigate the dissolution behavior of Al-Zn alloys in 3% NaCl solution at different polarization potentials. A new reaction model is proposed, and the activation mechanism of zinc in Al-Zn alloys is achieved. There are three intermediates in the dissolution process: Znad^+, Znad^2+ and Alad^+, ,of which only Zni can activate Al-Zn alloys. Most Znnd^+ is produced by β-phase,and the alloys with 2. 3% - 3. 8% (wt) Zn dissolve rapidly. The Al-Zn alloys of heart-shaped EIS are active in 3% NaCl solution, thus EIS characteristic can be used to distinguish the activa-tion of Al-Zn alloys.
基金Funding Open Access funding provided by Lib4RI–Library for the Research Institutes within the ETH Domain:Eawag,Empa,PSI&WSLthe Paul Scherrer Institute through the NES/GFA-ABE Cross Project.
文摘In this work,we explore the use of an iterative Bayesian Monte Carlo(iBMC)method for nuclear data evaluation within a TALYS Evaluated Nuclear Data Library(TENDL)framework.The goal is to probe the model and parameter space of the TALYS code system to find the optimal model and parameter sets that reproduces selected experimental data.The method involves the simultaneous variation of many nuclear reaction models as well as their parameters included in the TALYS code.The‘best’model set with its parameter set was obtained by comparing model calculations with selected experimental data.Three experimental data types were used:(1)reaction cross sections,(2)residual production cross sections,and(3)the elastic angular distributions.To improve our fit to experimental data,we update our‘best’parameter set—the file that maximizes the likelihood function—in an iterative fashion.Convergence was determined by monitoring the evolution of the maximum likelihood estimate(MLE)values and was considered reached when the relative change in the MLE for the last two iterations was within 5%.Once the final‘best’file is identified,we infer parameter uncertainties and covariance information to this file by varying model parameters around this file.In this way,we ensured that the parameter distributions are centered on our evaluation.The proposed method was applied to the evaluation of p+^(59)Co between 1 and 100 MeV.Finally,the adjusted files were compared with experimental data from the EXFOR database as well as with evaluations from the TENDL-2019,JENDL/He-2007 and JENDL-4.0/HE nuclear data libraries.