We propose a sequential monomer reaction model for a two-species predator-prey system, in which the aggregates of either species can spontaneously produce or lose one monomer and meanwhile, a type-B aggregate can prey...We propose a sequential monomer reaction model for a two-species predator-prey system, in which the aggregates of either species can spontaneously produce or lose one monomer and meanwhile, a type-B aggregate can prey upon one monomer of a type-A aggregate when they meet. Using the mean-field rate equation approach, we analytically investigate the kinetic behavior of the system. The results show that the evolution of the system depends crucially on the details of the rate kernels. The aggregate size distribution of either species approaches the conventional or modified scaling form in most cases. Moreover, the total size of either species grows exponentially with time in some cases and asymptotically retains a constant quantity in other cases, while it decays with time and vanishes finally in the rest cases.展开更多
基金supported by National Natural Science Foundation of China under Grant Nos.10775104 and 10305009Natural Science Foundation of Zhejiang Province of China under Grant No.102067
文摘We propose a sequential monomer reaction model for a two-species predator-prey system, in which the aggregates of either species can spontaneously produce or lose one monomer and meanwhile, a type-B aggregate can prey upon one monomer of a type-A aggregate when they meet. Using the mean-field rate equation approach, we analytically investigate the kinetic behavior of the system. The results show that the evolution of the system depends crucially on the details of the rate kernels. The aggregate size distribution of either species approaches the conventional or modified scaling form in most cases. Moreover, the total size of either species grows exponentially with time in some cases and asymptotically retains a constant quantity in other cases, while it decays with time and vanishes finally in the rest cases.