The formation of·CCl3 radicals in liver nuclei was suggested by spin trapping of them with N-t-butyl-α-phenylnitrone followed by GC/MS detection of the resulting adduct. Comparison of its formation in microsomal...The formation of·CCl3 radicals in liver nuclei was suggested by spin trapping of them with N-t-butyl-α-phenylnitrone followed by GC/MS detection of the resulting adduct. Comparison of its formation in microsomal biotransformation of CCl4 was made. In aerobic nuclear activation mixtures containing NADPH and CCl4, significant decrease in the arachidonic acid content of nuclear lipids was observed (27. 8%, compared to control), the intensity of this decrease was lower than that occurring in the corresponding microsomal incubation mixtures (29.1%). Significant decreases in arachidonic acid content of nuclear and endoplasmic reticulum lipids were also observed in animals at 6 hours of poisoning with the haloalkane. During aerobic nuclear metabolism of CCl4 or CBrCl3, cholesterol oxidation products were detected: a ketocholesterol, an epoxide like structure and 7-ketocholesterol. Nuclear protein carbonyl formation was not promoted during nuclear CCl4 biotransformation. NADPH by itself may lead to protein carbonyl formation during prolonged periods of incubation. CBrCl3 in contrast, led to decreased protein carbonyl formation. No increase in nuclear protein carbonyl formation was observed in CCl4 intoxicated animals during periods of time between 1 to 6 hours after treatment. The results indicate that during nuclear biotransformation of CCl4 or CBrCl3 reactive free radicals, PUFA degradation, reactive aldehydes and cholesterol oxidation products are formed, nearby DNA and regulatory proteins.展开更多
A mathematical mechanism of the n-pentane pyrolysis process based on free radical reaction model was presented.The kinetic parameters of n-pentane pyrolysis are obtained by quantum chemistry and the reaction network i...A mathematical mechanism of the n-pentane pyrolysis process based on free radical reaction model was presented.The kinetic parameters of n-pentane pyrolysis are obtained by quantum chemistry and the reaction network is established. The solution of the stiff ordinary differential equations in the n-pentane pyrolysis model is completed by semi implicit Eular algorithm. Then the pyrolysis mechanism based on free radical reaction model is built,and the computational efficiency increases 10 times by algorithm optimization. The validity of this model and its solution method is confirmed by the experimental results of n-pentane pyrolysis.展开更多
A simple and efficient method for the synthesis of 2-sulfonylquinoline from deoxygenative C2-sulfonylation of quinoline N-oxides with sulfinic acid induced by visible light is presented.This protocol shows a broad sub...A simple and efficient method for the synthesis of 2-sulfonylquinoline from deoxygenative C2-sulfonylation of quinoline N-oxides with sulfinic acid induced by visible light is presented.This protocol shows a broad substrate scope,and desired products with various substituents can be formed in moderate to high yields at room temperature.展开更多
The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic struc...The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic structure calculations. Vibrationally excited products of HCI, CO, and CO2 are observed in the IR emission spectra and the product vibrational state distribution are determined which shows that HCI and CO are vibrationally excited with the nascent average vibrational energy estimated to be 59.8 and 51.8 kJ/mol respectively. In combination with the G3MP2//B3LYP/6-311G(d,p) calculations, the reaction mechanisms have been characterized and the energetically favorable reaction pathways have been suggested.展开更多
The reaction of CH2SH radical with fluorine atom was studied at the levels of B3LYP/6-311G(d,p) and MP2(Full)/6-311G(d,p). The computational results show that the reaction has three channels and proceeds by the ...The reaction of CH2SH radical with fluorine atom was studied at the levels of B3LYP/6-311G(d,p) and MP2(Full)/6-311G(d,p). The computational results show that the reaction has three channels and proceeds by the addition of fluorine atoms on carbon or sulfur sites of CH2SH, forming initial intermediates. The calculated results show that the channel, in which fluorine attaches to the carbon atom to form CH2S and HF, is the most likely reaction pathway. Topological analysis of electron density was carried out for the three channels. The change trends of the chemical bonds on the reaction paths were discussed. The energy transition states and the structure transition regions (states) of the three channels were found. The calculated results show that the structure transition regions are broad in unobvious exothermic reactions or unobvious endothermic reactions, and are narrow in obvious exothermic reactions or obvious endothermic reactions.展开更多
The reaction of HCN with O(^1D, ^3p) radical has been investigated by density functional theory (DFT) and ab initio methods. The stationary points on the reaction paths (reactants, intermediates and products) we...The reaction of HCN with O(^1D, ^3p) radical has been investigated by density functional theory (DFT) and ab initio methods. The stationary points on the reaction paths (reactants, intermediates and products) were optimized at the (U)B3LYP/aug-cc-pVTZ level. Single-point calculations were performed at the (U)QCISD(T)/aug-cc-pVTZ level for the optimized structures and all the total energies were corrected by zero-point energy. It is shown that there exist three competing mechanisms of oxygen attacking nitrogen O→N, oxygen attacking carbon O→C and oxygen attacking hydrogen O→H. The rate constants were obtained via Eyring transition-state theory in the temperature range of 600~2000 K. The linear relationship between lnk and 1/T was presented. The results show that path 1 is the main reaction channel and the product of NCO + H is predominant.展开更多
An asymmetric total synthesis of(+)-21-epi-eburnamonine has been achieved.Key features of the synthesis include a visible-light photocatalytic intra-/intramolecular radical cascade reaction to assemble the tetracyclic...An asymmetric total synthesis of(+)-21-epi-eburnamonine has been achieved.Key features of the synthesis include a visible-light photocatalytic intra-/intramolecular radical cascade reaction to assemble the tetracyclic ABCD ring system,and a highly diastereoselective Johnson-Claisen rearrangement to establish the C20 all-carbon quaternary stereocenter.展开更多
The gas phase reaction mechanism of F2 + 2HBr = 2HF + Br2 has been investigated by (U)MP2 at 6-311G** level, and a series of four-center and three-center transition states have been obtained. The reaction mechan...The gas phase reaction mechanism of F2 + 2HBr = 2HF + Br2 has been investigated by (U)MP2 at 6-311G** level, and a series of four-center and three-center transition states have been obtained. The reaction mechanism was achieved by comparing the activation energy of seven reaction paths, i.e. the dissociation energy of F2 is less than the activation energy of the bimolecular elementary reaction F2 + HBr → HF + BrF. Thus it is theoretically proved that the title reaction occurs more easily in the free radical reaction with three medium steps.展开更多
The anion of heterocyclic ketene aminals reacted with 2,4-dini- tro-halobenzenes to give an arylated product through the radical nucleo- philic substitution confirmed by ESR spectroscopy,ESR-spin trapping techni- que,...The anion of heterocyclic ketene aminals reacted with 2,4-dini- tro-halobenzenes to give an arylated product through the radical nucleo- philic substitution confirmed by ESR spectroscopy,ESR-spin trapping techni- que,and depression of the reaction rate by the addition of inhibitor.展开更多
The transition state(TS) and Intrinsic Reaction Coordinate (IRC) for the titled reaction were traced by means of MCSCF/6-31G (210 configurations). The reaction activation energy of this reaction is 140.2KJ/mol. The re...The transition state(TS) and Intrinsic Reaction Coordinate (IRC) for the titled reaction were traced by means of MCSCF/6-31G (210 configurations). The reaction activation energy of this reaction is 140.2KJ/mol. The reaction rate constants of five temperetures were calculated by CVT involving the tunneling effects.展开更多
A photocatalytic[3+2]annulation of alkenes with vinyl azides was developed under irradiation by visible light in the presence of organic dye photocatalysts.Broad substrate scope and high functional group tolerance wer...A photocatalytic[3+2]annulation of alkenes with vinyl azides was developed under irradiation by visible light in the presence of organic dye photocatalysts.Broad substrate scope and high functional group tolerance were demonstrated by more than 50 examples.The reaction provides a novel and efficient method for the synthesis of polyfunctionalized pyrroles under very mild metal-free conditions without other additives.展开更多
Construction of C-F bonds is a direct and efficient method for introducing fluorine into pharmaceuticals,agrochemicals,and materials.Strategies such as nucleophilic,electrophilic,radical,and transition-metal catalyzed...Construction of C-F bonds is a direct and efficient method for introducing fluorine into pharmaceuticals,agrochemicals,and materials.Strategies such as nucleophilic,electrophilic,radical,and transition-metal catalyzed fluorination have been developed to meet the demand of diverse C-F bond formation.Among them,radical fluorination has been witnessed with substantial advancement in a recent decade.Herein,we reviewed methods for formation of C-F bonds with carbon-centered radicals as key intermediates,especially in recent five years.We introduce in the paper with different fluorinating reagents,strategies for radical generation,and application in late-stage functionalization and synthesis of PET tracers.We also indicate the current limitations and propose the direction of the field for the future development.展开更多
Bimolecular interactions play crucial roles in lignin pyrolysis.The tautomerization of key intermediates has a significant impact on the formation of stable products,whereas bimolecular tautomerization has been rarely...Bimolecular interactions play crucial roles in lignin pyrolysis.The tautomerization of key intermediates has a significant impact on the formation of stable products,whereas bimolecular tautomerization has been rarely clarified.In the present work,the bimolecular tautomerization mechanism induced by both concerted and radical interactions was proposed and carefully confirmed.A characteristicβ-O-4 lignin dimer,2-phenoxy-1-phenylethanol(α-OH-PPE),was used as the model compound to reveal two representative keto-phenol and enol-keto tautomerism mechanisms,based on theoretical calculations combined with pyrolysis experiments.The results indicate that the unimolecular tautomerism as the rate-determining step limits product generation,due to fairly high energy barriers.While the free hydroxy compounds and radicals derived from initial pyrolysis can further initiate bimolecular tautomerism reactions through the one-step concerted hydroxyl-assisted hydrogen transfer(hydroxylAHT)and two-step radical hydrogen abstraction interactions,respectively.By alleviating and even avoiding the large ring tension of tautomerism,the unstable tautomers(2,4-cyclohexadienone and1-hydroxy styrene)can be rapidly tautomerized into stable phenol and acetophenone with the help of intermolecular interaction.Benefitting from the significant advantage of retro-ene fragmentation in breaking theβ-O-4 bond to form tautomers,a large amount of stable phenolic and ketone products can be generated following bimolecular tautomerization in the pyrolysis ofβ-O-4 linked lignin.展开更多
The frequent detection of pharmaceutical compounds in the environment has led to a growing awareness,which may pose a major threat to the aquatic environment.In this study,photodegradation(direct and indirect photolys...The frequent detection of pharmaceutical compounds in the environment has led to a growing awareness,which may pose a major threat to the aquatic environment.In this study,photodegradation(direct and indirect photolysis)of two different dissociation states of fluoxetine(FLU)was investigated in water,mainly including the determination of photolytic transition states and products,and the mechanisms of indirect photodegradation with·OH,CO_(3)^(*-)and NO_(3)^(*).The main direct photolysis pathways are defluorination and C–C bond cleavage.In addition,the indirect photodegradation of FLU in water is mainly through the reactions with·OH and NO_(3)^(*),and the photodegradation reaction with CO_(3)^(*-)is relatively difficult to occur in the water environment.Our results provide a theoretical basis for understanding the phototransformation process of FLU in the water environment and assessing its potential risk.展开更多
The divergent synthesis of versatile 3,3′-disubstituted oxetane amino acids by utilizing visible-light-induced photocatalytic decarboxylative Giese-type reaction has been demonstrated.3-Methyleneoxetane-derived subst...The divergent synthesis of versatile 3,3′-disubstituted oxetane amino acids by utilizing visible-light-induced photocatalytic decarboxylative Giese-type reaction has been demonstrated.3-Methyleneoxetane-derived substrates are readily available in a single-step and highly reactive as radical acceptors,allowing the production of versatile oxetaneγ-andα-amino acids in high yields.A distinct ring strain release-driven radical addition mechanism was preliminarily revealed.The preparative power was further highlighted by the application in the synthesis of oxetane-containing dipeptides and azetidine amino acids,as well as the transformation of the product into novel oxetane-containing spiro-heterocycle pharmacophore.展开更多
Hexagonal boron nitride(h-BN)is a highly selective catalyst for oxidative dehydrogenation of light alkanes to produce the corresponding alkenes.Despite intense recent research effort,many aspects of the reaction mecha...Hexagonal boron nitride(h-BN)is a highly selective catalyst for oxidative dehydrogenation of light alkanes to produce the corresponding alkenes.Despite intense recent research effort,many aspects of the reaction mechanism,such as the observed supra-linear reaction order of alkanes,remain unresolved.In this work,we show that the introduction of a low concentration of propane in the feed of ethane oxidative dehydrogenation is able to enhance the C_(2)H_(6) conversion by 47%,indicating a shared reaction intermediate in the activation of ethane and propane.The higher activity of propane makes it the dominant radical generator in the oxidative co-dehydrogenation of ethane and propane(ODEP).This unique feature of the ODEP renders propane an effective probe molecule to deconvolute the two roles of alkanes in the dehydrogenation chemistry,i.e.,radical generator and substrate.Kinetic studies indicate that both the radical generation and the dehydrogenation pathways exhibit a first order kinetics toward the alkane partial pressure,leading to the observed second order kinetics of the overall oxidative dehydrogenation rate.With the steady-state approximation,a radical chain reaction mechanism capable of rationalizing observed reaction behaviors is proposed based on these insights.This work demonstrates the potential of ODEP as a strategy of both activating light alkanes in oxidative dehydrogenation on BN and mechanistic investigations.展开更多
Polyaniline-supported tungsten(W@PANI)was easily prepared by immersing polyaniline(PANI)in the aqueous solution of Na2WO4.It was found to be an efficient catalyst for oxidative deoximation reaction,the very important ...Polyaniline-supported tungsten(W@PANI)was easily prepared by immersing polyaniline(PANI)in the aqueous solution of Na2WO4.It was found to be an efficient catalyst for oxidative deoximation reaction,the very important transformation for pharmaceutical industry.Besides the green features,the method employed very few of catalytic tungsten(0.048 mol%vs.oxime substrates),resulting in the high turnover numbers(TONs)of the catalyst(ca.103 mol/mol)and the low metal residues in product(<0.1 ppm).The reaction is applicable for a variety of substrates,including those containing heterocycles,which are key intermediates in medicine synthesis.It has also been successfully magnified to kilogram scale production to afford the desired carbonyl products smoothly.展开更多
Alkynes are one of the most significant functional groups in organic chemistry and great efforts have been made to explore efficient approach for the construction of chiral alkynes.The asymmetric C(sp^(3))–C(sp)cross...Alkynes are one of the most significant functional groups in organic chemistry and great efforts have been made to explore efficient approach for the construction of chiral alkynes.The asymmetric C(sp^(3))–C(sp)cross-coupling provides a significant complementary strategy through radical-initiated process.However,the stereocontrol of highly reactive and unstable radical intermediate has been a challenge for decades.To address this problem,a variety of chiral ligands are developed for initiating the reaction and achieving enantiocontrol of alkyl radicals.This review summarizes recent developments in copper-catalyzed enantioselective alkynylation of prochiral alkyl radicals and their brief mechanistic studies.展开更多
The chemistry of alkoxy radicals was extensively explored during the period of 1960s to 1990s,but it has remained dormant for the past few decades.Recently,alkoxy radicals attract the attentions again,because new meth...The chemistry of alkoxy radicals was extensively explored during the period of 1960s to 1990s,but it has remained dormant for the past few decades.Recently,alkoxy radicals attract the attentions again,because new methods for generating alkoxy radical species have emerged.These newly developed methods are mainly based on the photolysis by visible light under mild conditions,thus allowing for new transformations of the carbon-centered radical species that are generated from theβ-scission or hydrogen abstraction of the alkoxy radicals.展开更多
文摘The formation of·CCl3 radicals in liver nuclei was suggested by spin trapping of them with N-t-butyl-α-phenylnitrone followed by GC/MS detection of the resulting adduct. Comparison of its formation in microsomal biotransformation of CCl4 was made. In aerobic nuclear activation mixtures containing NADPH and CCl4, significant decrease in the arachidonic acid content of nuclear lipids was observed (27. 8%, compared to control), the intensity of this decrease was lower than that occurring in the corresponding microsomal incubation mixtures (29.1%). Significant decreases in arachidonic acid content of nuclear and endoplasmic reticulum lipids were also observed in animals at 6 hours of poisoning with the haloalkane. During aerobic nuclear metabolism of CCl4 or CBrCl3, cholesterol oxidation products were detected: a ketocholesterol, an epoxide like structure and 7-ketocholesterol. Nuclear protein carbonyl formation was not promoted during nuclear CCl4 biotransformation. NADPH by itself may lead to protein carbonyl formation during prolonged periods of incubation. CBrCl3 in contrast, led to decreased protein carbonyl formation. No increase in nuclear protein carbonyl formation was observed in CCl4 intoxicated animals during periods of time between 1 to 6 hours after treatment. The results indicate that during nuclear biotransformation of CCl4 or CBrCl3 reactive free radicals, PUFA degradation, reactive aldehydes and cholesterol oxidation products are formed, nearby DNA and regulatory proteins.
文摘A mathematical mechanism of the n-pentane pyrolysis process based on free radical reaction model was presented.The kinetic parameters of n-pentane pyrolysis are obtained by quantum chemistry and the reaction network is established. The solution of the stiff ordinary differential equations in the n-pentane pyrolysis model is completed by semi implicit Eular algorithm. Then the pyrolysis mechanism based on free radical reaction model is built,and the computational efficiency increases 10 times by algorithm optimization. The validity of this model and its solution method is confirmed by the experimental results of n-pentane pyrolysis.
基金supported by the National Natural Science Foundation of China (21402103, 21772107)the China Postdoctoral Science Foundation (150030)+1 种基金the Research Fund of Qingdao Agricultural University’s Highlevel Person (631303)Shandong province key research and development plan(GG201809130228)~~
文摘A simple and efficient method for the synthesis of 2-sulfonylquinoline from deoxygenative C2-sulfonylation of quinoline N-oxides with sulfinic acid induced by visible light is presented.This protocol shows a broad substrate scope,and desired products with various substituents can be formed in moderate to high yields at room temperature.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20733005, No.20673126, and No.20973179), the National Basic Research Program of China (No.2007CB815200 and No.2007AA02Z116), and the Chinese Academy of Sciences.
文摘The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic structure calculations. Vibrationally excited products of HCI, CO, and CO2 are observed in the IR emission spectra and the product vibrational state distribution are determined which shows that HCI and CO are vibrationally excited with the nascent average vibrational energy estimated to be 59.8 and 51.8 kJ/mol respectively. In combination with the G3MP2//B3LYP/6-311G(d,p) calculations, the reaction mechanisms have been characterized and the energetically favorable reaction pathways have been suggested.
基金This work was supported by the National Natural Science Foundation of China (No.20573032),the Natural Science Foundation of Hebei Province (No.B2006000137), the Education Department Foundation of Hebei Province (No.2007123), and the Doctoral Foundation of Hebei Normal University (No.L2005B12).
文摘The reaction of CH2SH radical with fluorine atom was studied at the levels of B3LYP/6-311G(d,p) and MP2(Full)/6-311G(d,p). The computational results show that the reaction has three channels and proceeds by the addition of fluorine atoms on carbon or sulfur sites of CH2SH, forming initial intermediates. The calculated results show that the channel, in which fluorine attaches to the carbon atom to form CH2S and HF, is the most likely reaction pathway. Topological analysis of electron density was carried out for the three channels. The change trends of the chemical bonds on the reaction paths were discussed. The energy transition states and the structure transition regions (states) of the three channels were found. The calculated results show that the structure transition regions are broad in unobvious exothermic reactions or unobvious endothermic reactions, and are narrow in obvious exothermic reactions or obvious endothermic reactions.
基金supported by the Youth Fund Project of Anhui Normal University (No. 2006xqn65)
文摘The reaction of HCN with O(^1D, ^3p) radical has been investigated by density functional theory (DFT) and ab initio methods. The stationary points on the reaction paths (reactants, intermediates and products) were optimized at the (U)B3LYP/aug-cc-pVTZ level. Single-point calculations were performed at the (U)QCISD(T)/aug-cc-pVTZ level for the optimized structures and all the total energies were corrected by zero-point energy. It is shown that there exist three competing mechanisms of oxygen attacking nitrogen O→N, oxygen attacking carbon O→C and oxygen attacking hydrogen O→H. The rate constants were obtained via Eyring transition-state theory in the temperature range of 600~2000 K. The linear relationship between lnk and 1/T was presented. The results show that path 1 is the main reaction channel and the product of NCO + H is predominant.
基金surpport from National Natural Science Foundation of China(21921002 and 21991114)National Science and Technology Major Projects for“Major New Drugs Innovation and Development”(2018ZX09711003-015 and 2018ZX09711001-005-004).
文摘An asymmetric total synthesis of(+)-21-epi-eburnamonine has been achieved.Key features of the synthesis include a visible-light photocatalytic intra-/intramolecular radical cascade reaction to assemble the tetracyclic ABCD ring system,and a highly diastereoselective Johnson-Claisen rearrangement to establish the C20 all-carbon quaternary stereocenter.
基金This work was supported by the China Postdoctoral Science Foundation (No. 2003033486) and the Natural Science Research Fund of University in JiangSu (No. 04KJB150149)
文摘The gas phase reaction mechanism of F2 + 2HBr = 2HF + Br2 has been investigated by (U)MP2 at 6-311G** level, and a series of four-center and three-center transition states have been obtained. The reaction mechanism was achieved by comparing the activation energy of seven reaction paths, i.e. the dissociation energy of F2 is less than the activation energy of the bimolecular elementary reaction F2 + HBr → HF + BrF. Thus it is theoretically proved that the title reaction occurs more easily in the free radical reaction with three medium steps.
文摘The anion of heterocyclic ketene aminals reacted with 2,4-dini- tro-halobenzenes to give an arylated product through the radical nucleo- philic substitution confirmed by ESR spectroscopy,ESR-spin trapping techni- que,and depression of the reaction rate by the addition of inhibitor.
文摘The transition state(TS) and Intrinsic Reaction Coordinate (IRC) for the titled reaction were traced by means of MCSCF/6-31G (210 configurations). The reaction activation energy of this reaction is 140.2KJ/mol. The reaction rate constants of five temperetures were calculated by CVT involving the tunneling effects.
基金financial support of this research by the National Natural Sciences Foundation of China(21871044 and 21472017).
文摘A photocatalytic[3+2]annulation of alkenes with vinyl azides was developed under irradiation by visible light in the presence of organic dye photocatalysts.Broad substrate scope and high functional group tolerance were demonstrated by more than 50 examples.The reaction provides a novel and efficient method for the synthesis of polyfunctionalized pyrroles under very mild metal-free conditions without other additives.
基金the National Natural Science Foundation of China(22301224)Wuhan Science and Technology Project(2023020201020273),and Wuhan University for financial support.We thank Prof.Wen-Bo Liu(Wuhan University)for proof reading.
文摘Construction of C-F bonds is a direct and efficient method for introducing fluorine into pharmaceuticals,agrochemicals,and materials.Strategies such as nucleophilic,electrophilic,radical,and transition-metal catalyzed fluorination have been developed to meet the demand of diverse C-F bond formation.Among them,radical fluorination has been witnessed with substantial advancement in a recent decade.Herein,we reviewed methods for formation of C-F bonds with carbon-centered radicals as key intermediates,especially in recent five years.We introduce in the paper with different fluorinating reagents,strategies for radical generation,and application in late-stage functionalization and synthesis of PET tracers.We also indicate the current limitations and propose the direction of the field for the future development.
基金the National Natural Science Foundation of China(52276189,52106241)Natural Science Foundation of Jiangsu Province(BK20221248)for financial support。
文摘Bimolecular interactions play crucial roles in lignin pyrolysis.The tautomerization of key intermediates has a significant impact on the formation of stable products,whereas bimolecular tautomerization has been rarely clarified.In the present work,the bimolecular tautomerization mechanism induced by both concerted and radical interactions was proposed and carefully confirmed.A characteristicβ-O-4 lignin dimer,2-phenoxy-1-phenylethanol(α-OH-PPE),was used as the model compound to reveal two representative keto-phenol and enol-keto tautomerism mechanisms,based on theoretical calculations combined with pyrolysis experiments.The results indicate that the unimolecular tautomerism as the rate-determining step limits product generation,due to fairly high energy barriers.While the free hydroxy compounds and radicals derived from initial pyrolysis can further initiate bimolecular tautomerism reactions through the one-step concerted hydroxyl-assisted hydrogen transfer(hydroxylAHT)and two-step radical hydrogen abstraction interactions,respectively.By alleviating and even avoiding the large ring tension of tautomerism,the unstable tautomers(2,4-cyclohexadienone and1-hydroxy styrene)can be rapidly tautomerized into stable phenol and acetophenone with the help of intermolecular interaction.Benefitting from the significant advantage of retro-ene fragmentation in breaking theβ-O-4 bond to form tautomers,a large amount of stable phenolic and ketone products can be generated following bimolecular tautomerization in the pyrolysis ofβ-O-4 linked lignin.
基金supported by the National Natural Science Foundation of China(No.41601519)。
文摘The frequent detection of pharmaceutical compounds in the environment has led to a growing awareness,which may pose a major threat to the aquatic environment.In this study,photodegradation(direct and indirect photolysis)of two different dissociation states of fluoxetine(FLU)was investigated in water,mainly including the determination of photolytic transition states and products,and the mechanisms of indirect photodegradation with·OH,CO_(3)^(*-)and NO_(3)^(*).The main direct photolysis pathways are defluorination and C–C bond cleavage.In addition,the indirect photodegradation of FLU in water is mainly through the reactions with·OH and NO_(3)^(*),and the photodegradation reaction with CO_(3)^(*-)is relatively difficult to occur in the water environment.Our results provide a theoretical basis for understanding the phototransformation process of FLU in the water environment and assessing its potential risk.
基金Financial support from the program of the National Natural Science Foundation of China(21871086 and 22171080,Y-Q.Z.)Natural Science Foundation of Shanghai(23ZR1417200,Y.-Q.Z.)isgratefullyacknowledged.
文摘The divergent synthesis of versatile 3,3′-disubstituted oxetane amino acids by utilizing visible-light-induced photocatalytic decarboxylative Giese-type reaction has been demonstrated.3-Methyleneoxetane-derived substrates are readily available in a single-step and highly reactive as radical acceptors,allowing the production of versatile oxetaneγ-andα-amino acids in high yields.A distinct ring strain release-driven radical addition mechanism was preliminarily revealed.The preparative power was further highlighted by the application in the synthesis of oxetane-containing dipeptides and azetidine amino acids,as well as the transformation of the product into novel oxetane-containing spiro-heterocycle pharmacophore.
文摘Hexagonal boron nitride(h-BN)is a highly selective catalyst for oxidative dehydrogenation of light alkanes to produce the corresponding alkenes.Despite intense recent research effort,many aspects of the reaction mechanism,such as the observed supra-linear reaction order of alkanes,remain unresolved.In this work,we show that the introduction of a low concentration of propane in the feed of ethane oxidative dehydrogenation is able to enhance the C_(2)H_(6) conversion by 47%,indicating a shared reaction intermediate in the activation of ethane and propane.The higher activity of propane makes it the dominant radical generator in the oxidative co-dehydrogenation of ethane and propane(ODEP).This unique feature of the ODEP renders propane an effective probe molecule to deconvolute the two roles of alkanes in the dehydrogenation chemistry,i.e.,radical generator and substrate.Kinetic studies indicate that both the radical generation and the dehydrogenation pathways exhibit a first order kinetics toward the alkane partial pressure,leading to the observed second order kinetics of the overall oxidative dehydrogenation rate.With the steady-state approximation,a radical chain reaction mechanism capable of rationalizing observed reaction behaviors is proposed based on these insights.This work demonstrates the potential of ODEP as a strategy of both activating light alkanes in oxidative dehydrogenation on BN and mechanistic investigations.
基金Jiangsu Provincial Six Talent Peaks Project(No.XCL-090)Natural Science Foundation of Jiangsu Province(No.BK20181449)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)for support。
文摘Polyaniline-supported tungsten(W@PANI)was easily prepared by immersing polyaniline(PANI)in the aqueous solution of Na2WO4.It was found to be an efficient catalyst for oxidative deoximation reaction,the very important transformation for pharmaceutical industry.Besides the green features,the method employed very few of catalytic tungsten(0.048 mol%vs.oxime substrates),resulting in the high turnover numbers(TONs)of the catalyst(ca.103 mol/mol)and the low metal residues in product(<0.1 ppm).The reaction is applicable for a variety of substrates,including those containing heterocycles,which are key intermediates in medicine synthesis.It has also been successfully magnified to kilogram scale production to afford the desired carbonyl products smoothly.
基金We are grateful to the National Natural Science Foundation of China(22071073,22271112,21772218,and 21821002)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20000000)State Key Laboratory of Organometallic Chemistry,Shanghai Institute of Organic Chemistry,Chinese Academy of Sciences and the Central China Normal University(CCNU).
文摘Alkynes are one of the most significant functional groups in organic chemistry and great efforts have been made to explore efficient approach for the construction of chiral alkynes.The asymmetric C(sp^(3))–C(sp)cross-coupling provides a significant complementary strategy through radical-initiated process.However,the stereocontrol of highly reactive and unstable radical intermediate has been a challenge for decades.To address this problem,a variety of chiral ligands are developed for initiating the reaction and achieving enantiocontrol of alkyl radicals.This review summarizes recent developments in copper-catalyzed enantioselective alkynylation of prochiral alkyl radicals and their brief mechanistic studies.
基金The project is supported by NSFC(91956104),BNLMS,and Laboratory for Synthetic Chemistry and Chemical Biology of Health@InnoHK of ITC,HKSAR.
文摘The chemistry of alkoxy radicals was extensively explored during the period of 1960s to 1990s,but it has remained dormant for the past few decades.Recently,alkoxy radicals attract the attentions again,because new methods for generating alkoxy radical species have emerged.These newly developed methods are mainly based on the photolysis by visible light under mild conditions,thus allowing for new transformations of the carbon-centered radical species that are generated from theβ-scission or hydrogen abstraction of the alkoxy radicals.