期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fusion Reaction Rate Coefficient for Different Beam and Target Scenarios
1
作者 欧巍 曾宪俊 +1 位作者 邓柏权 苟富均 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第2期43-47,共5页
Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity ... Fusion power output is proportional not only to the fuel particle number densities participating in reaction but also to the fusion reaction rate coefficient (or reactivity), which is dependent on reactant velocity distribution functions. They are usuMly assumed to be dual Maxwellian distribution functions with the same temperature for thermal nuclear fusion circumstances. However, if high power neutral beam injection and minority ion species ICRF plasma heating, or multi-pinched plasma beam head-on collision, in a converging region are required and investigated in future large scale fusion reactors, then the fractions of the injected energetic fast ion tail resulting from ionization or charge exchange will be large enough and their contribution to the non-Maxwellian distribution functions is not negligible, hence to the fusion reaction rate coefficient or calculation of fusion power. In such cases, beam-target, and beam-beam reaction enhancement effect contributions should play very important roles. In this paper, several useful formulae to calculate the fusion reaction rate coefticient for different beam and target combination scenarios are derived in detail 展开更多
关键词 Fusion reaction rate coefficient for Different Beam and Target Scenarios exp
下载PDF
Rate Coefficients of Roaming Reaction H+MgH Using Ring Polymer Molecular Dynamics 被引量:1
2
作者 Hui Yang Wen-bin Fan +2 位作者 Jun-hua Fang Jianing Song Yongle Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第2期149-156,I0001,共9页
The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This... The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients of the multi-channel roaming reaction H+MgH→Mg+H_(2).Two reaction channels,tight and roaming,are explicitly considered.This is a pioneering attempt of exerting RPMD method to multichannel reactions.With the help of a newly developed optimization-interpolation protocol for preparing the initial structures and adaptive protocol for choosing the force constants,we have successfully obtained the thermal rate coefficients.The results are consistent with those from other theoretical methods,such as variational transition state theory and quantum dynamics.Especially,RPMD results exhibit negative temperature dependence,which is similar to the results from variational transition state theory but different from the ones from ground state quantum dynamics calculations. 展开更多
关键词 Ring-polymer molecular dynamics Semiclassical dynamics Multi-channel reaction Roaming reaction reaction rate coefficient
下载PDF
Rate Coecients and Kinetic Isotope E ects of Cl+XCl→XCl+Cl(X=H,D,Mu)Reactions from Ring Polymer Molecular Dynamics
3
作者 Jun-hua Fang Wen-bin Fan +2 位作者 Hui Yang Jia-ning Song Yong-le Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第4期453-461,I0003,共10页
The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients and kinetic isotope effects of the heavy-light-heavy abstract reaction Cl+XCl→XCl+Cl(X=H,D,Mu).For the Cl+HCl reaction,the ... The ring-polymer molecular dynamics(RPMD)was used to calculate the thermal rate coefficients and kinetic isotope effects of the heavy-light-heavy abstract reaction Cl+XCl→XCl+Cl(X=H,D,Mu).For the Cl+HCl reaction,the excellent agreement between the RPMD and experimental values provides a strong proof for the accuracy of the RPMD theory.And the RPMD results are also consistent with results from other theoretical methods including improved-canonical-variational-theory and quantum dynamics.The most novel finding is that there is a double peak in Cl+MuCl reaction near the transition state,leaving a free energy well.It comes from the mode softening of the reaction system at the peak of the potential energy surface.Such an explicit free energy well suggests strongly there is an observable resonance.And for the Cl+DCl reaction,the RPMD rate coefficient again gives very accurate results compared with experimental values.The only exception is at the temperature of 312.5 K,results from RPMD and all other theoretical methods are close to each other but slightly lower than the experimental value,which indicates experimental or potential energy surface deficiency. 展开更多
关键词 Ring-polymer molecular dynamics Quantum effects Recrossing effects reaction rate coefficient Kinetic isotope effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部