期刊文献+
共找到79,715篇文章
< 1 2 250 >
每页显示 20 50 100
Analytical model for predicting time-dependent lateral deformation of geosynthetics-reinforced soil walls with modular block facing 被引量:1
1
作者 Luqiang Ding Chengzhi Xiao Feilong Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期711-725,共15页
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general... To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed. 展开更多
关键词 GEOSYNTHETICS Creep behavior Geosynthetics-reinforced soil(GRS)walls Lateral deformation Analytical model
下载PDF
Lateral earth pressure of granular backfills on retaining walls with expanded polystyrene geofoam inclusions under limited surcharge loading 被引量:1
2
作者 Kewei Fan Guangqing Yang +2 位作者 Weilie Zou Zhong Han Yang Shen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1388-1397,共10页
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t... Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests. 展开更多
关键词 Retaining wall Expanded polystyrene(EPS)geofoam Limited surcharge loading Lateral earth pressure Model test Prediction
下载PDF
Resilient performance of self-centering hybrid rocking walls with curved interface under pseudo-static loading
3
作者 Su Xing Yan Shi +1 位作者 Sun Xianglei Wang Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期65-85,共21页
Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during ... Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW. 展开更多
关键词 self-centering hybrid rocking wall(SCRW) monolithic shear wall(SW) earthquake resilient performance(ERP) curved interface rocking center
下载PDF
Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling
4
作者 Muhammad Akbar Huali Pan +2 位作者 Jiangcheng Huang Bilal Ahmed Guoqiang Ou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2835-2863,共29页
The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement co... The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers. 展开更多
关键词 Seismic analysis finite element modeling earth-retaining ER walls dynamic response structural resilience
下载PDF
EXPONENTIAL CONVERGENCE FOR NONLINEAR SPDES WITH DOUBLE REFLECTING WALLS
5
作者 Dengdi CHEN Yan ZHENG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第6期2465-2484,共20页
The present article is devoted to nonlinear stochastic partial differential equations with double reflecting walls driven by possibly degenerate,multiplicative noise.We prove that the corresponding Markov semigroup po... The present article is devoted to nonlinear stochastic partial differential equations with double reflecting walls driven by possibly degenerate,multiplicative noise.We prove that the corresponding Markov semigroup possesses an exponentially attracting invariant measure through asymptotic coupling,in which Foias-Prodi estimation and the truncation technique are crucial for the realization of the Girsanov transform. 展开更多
关键词 stochastic partial differential equations with double reflecting walls exponential mixing asymptotic coupling Girsanov transform
下载PDF
Time-History Dynamic Characteristics of Reinforced Soil-Retaining Walls
6
作者 Lianhua Ma Min Huang Linfeng Han 《Structural Durability & Health Monitoring》 EI 2024年第6期853-869,共17页
Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil... Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account.A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language,and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls.The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed,and the dynamic reactions of the two types of retaining walls to vibration were compared and studied.The dynamic performance of reinforced earth retaining walls was evaluated. 展开更多
关键词 Reinforced earth retaining walls time history dynamic analysis finite element
下载PDF
Performance of Thermal Insulation of Different Composite Walls and Roofs Materials Used for Energy Efficient Building Construction in Iraq
7
作者 Ahmed Mustaffa Saleem Abdullah A.Badr +1 位作者 Bahjat Hassan Alyas Omar Rafae Alomar 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1231-1244,共14页
This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.T... This study numerically involves the performance of thermal insulation of different types of composite walls and roofs to demonstrate the best model that can be used for energy-efficient building construction in Iraq.The mathematical model is solved by building its code using the Transmission Matrix Method in MATLAB software.The weather data of 21st July 2022 in Baghdad City/Iraq is selected as a test day.The wall types are selected:the first type consists of cement mortar,brick,and gypsum,the second type consists of cement mortar,brick,gypsum,and plaster and the third type consists of cement mortar,brick,gypsum,air cavity,and sheathing timber.The roof types are chosen:the first type consists of reinforced concrete,gypsum,and plaster,and the second type consists of the precast concrete flag,river sand,tar,reinforced concrete,gypsum,and plaster.The obtained solutions are compared with previous studies for the same city but with different types of walls and roofs.The findings display that the second and third types of walls reduce the entry heat flux by 4%and 10%as compared to the first type of wall.Also,the results indicate that the second type of roof reduces the entry heat flux by 21%as compared to the first type of roof.The results confirm that the best models of walls and roofs in Iraq are the third and second types,respectively,as compared to other models and hence,the performance of insulation material strongly depends on the materials used while building them. 展开更多
关键词 Thermal insulation energy gain composites walls and roofs heat flux transmission matrix method
下载PDF
Quantitative crack evaluation in slender reinforced concrete walls with rectangular section
8
作者 Priyana Rajbhandari Chanipa Netrattana +1 位作者 Taku Obara Kono Susumu 《Resilient Cities and Structures》 2024年第4期1-20,共20页
Past earthquakes have shown that cracking affects post-earthquake functionality and accounted for huge repair costs for reinforced concrete(RC)wall buildings,even though the code-compliant seismic design prevents col-... Past earthquakes have shown that cracking affects post-earthquake functionality and accounted for huge repair costs for reinforced concrete(RC)wall buildings,even though the code-compliant seismic design prevents col-lapse.Engineers should know the maximum residual flexural crack width and volume of repair material needed for the flexural cracks to determine the damage degree and the repair cost.This paper presents the experimental campaign on four RC slender walls that investigated the effect of confining reinforcement and thickness of the wall on flexural crack parameters under quasi-static reversed cyclic loading.The width of all flexural cracks was measured when reaching each cycle peak drift and when unloading to zero lateral loads.Crack widths at peak and residual states increased with increasing peak drift.Based on the experimental observations,it was found that the maximum residual crack width is obtained as a simple function of the extreme tension fiber elongation of the wall tensile fiber within±30%error.In addition,this paper outlines methods to calculate the volume of repair material for flexural cracks from the extreme tension fiber elongation of the wall.With the funda-mental rules found from the experiment in this paper,it will become possible to obtain the maximum crack width and the volume of repair material from simple numerical analysis tools such as a multi-spring line element model. 展开更多
关键词 Flexural crack Residual crack RC wall Damage evaluation Crack width Crack length
下载PDF
Dynamic Changes in Distribution of Lignin and Hemicelluloses in Cell Walls During Differentiation of Secondary Xylem in Eucommia ulmoides 被引量:5
9
作者 贺新强 崔克明 李正理 《Acta Botanica Sinica》 CSCD 2001年第9期899-904,共6页
The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet... The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S-1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S-1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S-2 and S-3 layer, lignification extended to S-1, S-2 and S-3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components. 展开更多
关键词 cell wall LIGNIN hemicelluloses secondary xylem differentiation Eucommia ulmoides
下载PDF
FREE VIBRATION ANALYSIS OF SHEAR WALLS WITH SHORT PIERS 被引量:1
10
作者 黄东升 刘世美 +2 位作者 华新钰 刘俊龙 艾军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期194-201,共8页
The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic an... The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic analysis are also obtained by repeatedly calculating the lateral unit load on the wall at each level where a lumped mass located. Dynamic analyses are implemented for short pier shear walls with different parameters, called the integrative coefficient and the pier strength coefficient related to the dimensions of walls. The influences of two coefficients on the dynamic performances of the structure are studied. Results indicate that with the increase of the integrative coefficient, the periods of top two modes apparently decrease but the other periods of higher frequency modes show little variation when the pier strength coefficient remains constant. Similarly, if the integrative coefficient is constant, the top two periods of the free vibration decrease with the increase of the integrative coefficient but the other periods of higher frequency modes show less variation. 展开更多
关键词 shear wall with short piers dynamic analysis integrative coefficient pier strength coefficient
下载PDF
Nonlinear Behavior of Reinforced Concrete Slit Shear Walls under Seismic Actions *
11
作者 戴航 陈忠范 +1 位作者 关国雄 张佑启 《Journal of Southeast University(English Edition)》 EI CAS 1998年第1期86-92,共7页
A reinforced concrete slit shear wall is a new breed of earthquake resistant structure recently proposed by the authors. In this paper, the seismic responses of the slit shear walls under the shake of earthquake exci... A reinforced concrete slit shear wall is a new breed of earthquake resistant structure recently proposed by the authors. In this paper, the seismic responses of the slit shear walls under the shake of earthquake excitation have been dealt with. Based on a simplified structural model, which is shown to have a sufficient accuracy for the real slit shear wall structure, the analysis focuses on the influence of nonlinear behavior of the connecting beams between the slits on the dynamic performance of the whole slit shear wall structure. It has been found that the yielding of connecting beams in a slit shear wall can provide significant improvement in reducing the structural responses, and by choosing an appropriate strength value for the connecting beams, it is possible to optimize the seismic response of the slit shear wall. 展开更多
关键词 seismic response slit shear wall reinforced concrete connecting beam
下载PDF
Improved design of special boundary elements for T-shaped reinforced concrete walls 被引量:9
12
作者 Ji Xiaodong Liu Dan Qian Jiaru 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期83-95,共13页
This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design metho... This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements ofT-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension. 展开更多
关键词 code comparison displacement-based method seismic design special boundary element T-shaped wall
下载PDF
Shake-table testing of a self-centering precast reinforced concrete frame with shear walls 被引量:10
13
作者 Lu Xilin Yang Boya Zhao Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第2期221-233,共13页
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls ... The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination ofunbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions. 展开更多
关键词 SELF-CENTERING shake-table test RC frame with shear walls PRECAST unbonded post-tensioning seismicperformance
下载PDF
Experimental Study on Bubble Pulse Features Under the Combined Action of Horizontal and Vertical Walls 被引量:5
14
作者 王诗平 初文华 张阿漫 《China Ocean Engineering》 SCIE EI CSCD 2014年第3期293-301,共9页
The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be... The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research. 展开更多
关键词 BUBBLE combined action horizontal and vertical walls experimental study
下载PDF
Non-limit passive soil pressure on rigid retaining walls 被引量:7
15
作者 Dou Guotao Xia Junwu +2 位作者 YU Wenjie Yuan Fang Bai Weigang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期581-587,共7页
This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the d... This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the disturbance degree theory, as well as the spring-element model, by setting the rotation angle of the wall as the disturbance parameter, we establish both a depth distribution function for sand and a nonlinear depth distribution calculation method for the non-limit passive soil pressure on a rigid retaining wall under the RT model, which is then compared with experiment. The results suggest that under the RT model: the non-limit soil pressure has a nonlinear distribution; the backfill disturbance degree and the lateral soil pressure increase with an increase in the wall rotation angle; and, the points where the resultant lateral soil pressure acts on the retaining wall are less than 2/3 of the height of the wall. The soil pressure predicted by the theoretical calculation put forward in this paper are quite similar to those obtained by the model experiment, which verifies the theoretical value, and the engineering guidance provided by the calculations are of significance. 展开更多
关键词 RT model Rigid wall Non-limit passive soil pressure Spring element Genetic algorithm
下载PDF
Three - dimensional numerical simulation of oblique wave action on vertical walls 被引量:4
16
作者 LI Benxia YU Xiping YU Yuxiu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2006年第1期147-153,共7页
A three-dimensional numerical model based on the potential theory was developed to study the oblique wave action on vertical walls. A source term inside the domain was used to generate incident waves and outgoing wave... A three-dimensional numerical model based on the potential theory was developed to study the oblique wave action on vertical walls. A source term inside the domain was used to generate incident waves and outgoing waves were dissipated by sponge layers and transmitted by radiation boundaries. The finite difference method was used to solve the governing equations and boundary conditions in the regular transformed domain in σ-coordinate. Satisfactory agreements between the numerical predictions and experimental results of wave force were obtained. It is concluded that the maximum wave force acting on the vertical walls is induced by the obliquely incident waves rather than the normally incident waves. 展开更多
关键词 oblique waves vertical walls wave action potential theory
下载PDF
Evaluation of four final irrigation protocols for cleaning root canal walls 被引量:8
17
作者 Qiang Li Qian Zhang +1 位作者 Xiaoying Zou Lin Yue 《International Journal of Oral Science》 SCIE CAS CSCD 2020年第3期269-274,共6页
The aim of this study was to compare the efficiency of four final irrigation protocols in smear layer removal and bacterial inhibition in root canal systems.Thirty roots inoculated with Enterococcus faecalis were prep... The aim of this study was to compare the efficiency of four final irrigation protocols in smear layer removal and bacterial inhibition in root canal systems.Thirty roots inoculated with Enterococcus faecalis were prepared with ProTaper Universal files.The teeth were disinfected by conventional needle irrigation,sonic agitation using the EndoActivator device,passive ultrasonic irrigation,or an M3 Max file.Teeth with no root canal preparation served as blank controls for the establishment of the infection baseline.Teeth with preparation but no final irrigation served as a post-instrumentation baseline.After the final irrigation,the teeth were sectioned in half.One half of each tooth was examined by scanning electron microscopy(SEM)to assess smear layer removal using a five-point scale.The other half was examined by confocal laser scanning microscopy(CLSM)using the LIVE/DEAD BackLight bacterial viability kit to evaluate the depth of bacterial survival in dentinal tubules.SEM analysis revealed no significant difference in smear layer removal throughout the whole canal among the EA,PUI,and M3 Max groups(P>0.05).CLSM revealed that PUI achieved the greatest bacterial inhibition depth in the coronal((174.27±31.63)μm),middle((160.94±37.77)μm),and apical((119.53±28.49)μm)thirds of the canal(all P<0.05 vs.other groups).According to this comprehensive SEM and CLSM evaluation,PUI appears to have the best infection control ability in root canal systems. 展开更多
关键词 NEEDLE walls IRRIGATION
下载PDF
Reflection and Transmission of Regular Waves from/Through Single and Double Perforated Thin Walls 被引量:4
18
作者 Nadji CHIOUKH Esin CEVIK Yalcin YUKSEL 《China Ocean Engineering》 SCIE EI CSCD 2017年第4期466-475,共10页
In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perfor... In this paper, reflection and transmission coefficients of regular waves from/through perforated thin walls are investigated. Small scale laboratory tests have been performed in a wave flume firstly with single perforated thin Plexiglas plates of various porosities. The plate is placed perpendicular to the flume with the height from the flume bottom to the position above water surface. With this thin wall in the flume wave overtopping is prohibited and incident waves are able to transmit. The porosities of the walls are achieved by perforating the plates with circular holes. Model settings with double perforated walls parallel to each other forming so called chamber system, have been also examined. Several parameters have been used for correlating the laboratory tests’ results. Experimental data are also compared with results from the numerical model by applying the multi-domain boundary element method (MDBEM) with linear wave theory. Wave energy dissipation due to the perforations of the thin wall has been represented by a simple yet effective porosity parameter in the model. The numerical model with the MDBEM has been further validated against the previously published data. 展开更多
关键词 wave-structure interaction perforated thin walls boundary element experimental tests wave reflection wave transmission
下载PDF
Development of a new connection for precast concrete walls subjected to cyclic loading 被引量:8
19
作者 Ramin Vaghei Farzad Hejazi +2 位作者 Hafez Taheri Mohd Saleh Jaafar Farah Nora Aznieta Abdul Aziz 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期97-117,共21页
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures... The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints o fiBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions. 展开更多
关键词 industrial building system precast concrete structure precast wall connection finite element method nonlinear analysis energy dissipation concrete damage plasticity
下载PDF
Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls 被引量:5
20
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Qiao Qiyun Yu Chuanpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期125-139,共15页
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p... In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique. 展开更多
关键词 steel reinforced concrete steel plate deep beam multi energy dissipation composite shear wall seismic behavior
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部