In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design...In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.展开更多
This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automati...This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.展开更多
The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easi...The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.展开更多
Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyrist...Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyristor control reactor reac- tive power compensation system and TCR single closed loop strategy was pro- posed. In addition, as digital simulation software, Arene was applied to simulate the Jining coal mine No.2 system. The simulation results validate that the design is effective to improve power factor and stabilization of the system.展开更多
In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect ...In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.展开更多
The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled com...The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.展开更多
As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wi...As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wind power(WP).Due to the randomness of WP output,higher requirements are put forward for the voltage stability of each node of the regional power grid,and various reactive power compensation devices(RPCDs)need to be rationally configured to meet the stable operation requirements of the system.This paper proposes an optimal configuration method for multi-type RPCDs in regional power grids with a high proportion of WP.The RPCDs are located according to the proposed static voltage stability index(VSI)and dynamicVSI based on dynamic voltage drop area,and the optimal configuration model of RPCDs is constructed with the lowest construction cost as the objective function to determine the installed capacity of various RPCDs.Finally,the corresponding regional power grid model for intensive access to WFs is constructed on the simulation platform to verify the effectiveness of the proposed method.展开更多
This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). ...This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.展开更多
Effective reactive power compensation is very important to the safe,economical and high quality running of power system.The principle and characteristic of several main reactive power compensation devices were analyze...Effective reactive power compensation is very important to the safe,economical and high quality running of power system.The principle and characteristic of several main reactive power compensation devices were analyzed and compared in details, and the development trend and application prospect were viewed.展开更多
Power quality is a complex term that is defined by the legislation, but also as an obligation of the supplier and customer. The customer must return the negative effects of its consumers (taking reactive power, harmo...Power quality is a complex term that is defined by the legislation, but also as an obligation of the supplier and customer. The customer must return the negative effects of its consumers (taking reactive power, harmonic generation, phase unbalance) down to the prescribed limits. This primarily refers to the presence of non-linear consumers, leading to distortion of the basic parameters of voltage and current, in steady or transient conditions, and therefore the deformation of waveform. One way to reduce the negative feedback effects, especially with inductive loads, is the reactive energy compensation. The paper presents one of the solution for reactive power compensation, applied on the pumping station of public company "Waterworks and Sewerage---Bar", Bar.展开更多
Distributed photovoltaic(PV)systems play an important role in supplying many recent microgrids.The absence of reactive power support for these small-scale PV plants increases total microgrid losses and voltage-instabi...Distributed photovoltaic(PV)systems play an important role in supplying many recent microgrids.The absence of reactive power support for these small-scale PV plants increases total microgrid losses and voltage-instability threats.Reactive power compensations(RPCs)should be integrated to enhance both microgrid losses and voltage profiles.RPC planning is a non-linear,complicated problem.In this paper,a combined RPC allocation and sizing algorithm is proposed.The RPC-integrating buses are selected using a new adaptive approach of loss sensitivity analysis.In the sizing process,the uncertainties in PV power and load demand are modelled using proper probability density functions.Three simulation techniques for handling uncertainties are compared to define the accurate and fast accurate method as follows:Monte Carlo simulation(MCS),scenario tree construction and reduction method,and point estimation method(PEM).The load flow equations are solved using the forward-backward sweep method.RPCs are optimally sized using the beetle-antenna-based strategy with grey wolf optimization(BGWO)to overcome the local minima problem that appeared in the other pre-proposed methods.Results have been compared using particle swarm optimization and conventional GWO.The proposed model is verified using the IEEE 33 radial bus system.The expected power loss has been reduced by 22% and 31% using compensation of 26% and 44%,respectively.The results obtained prove that the BGWO optimal power flow and PEM to handle the uncertainty can significantly reduce the computation time with sufficient accuracy.Under the study conditions,PEM reduces the computation time to 4 minutes compared with 4 hours for MCS,with only a 3% error compared with MCS as an uncertainty benchmark method.展开更多
Half-wavelength AC transmission(HWACT)refers to transmission along lines with an electrical distance of half the power frequency wavelength.The voltage amplitude at the sending terminal is equal to that at the receivi...Half-wavelength AC transmission(HWACT)refers to transmission along lines with an electrical distance of half the power frequency wavelength.The voltage amplitude at the sending terminal is equal to that at the receiving terminal in steady-state.Furthermore,the voltage at the receiving terminal does not vary with load.However,the electrical distance has been extended in actual HWACT lines because of the impact of the equivalent power supply impedance,so the attractive characteristics no longer hold.As a result,reactive power compensation methods with constant power factor and constant voltage are needed and these are presented in this paper.The steady-state operational characteristics,the calculation methods of additional reactive power compensation and the admittance of a controllable shunt reactor are also given.The methods proposed in this paper are relatively simple to implement,and the calculations involved are straightforward,resulting in effective voltage stabilization.The results indicate that such compensation methods can increase the transmission capacity while maintaining a relatively low voltage along the line.展开更多
The purpose of this study is to solve the main problems in distribution networks,including increased line loss and reduced power supply quality caused by insufficient capacitive reactive power.To reduce the capacity,v...The purpose of this study is to solve the main problems in distribution networks,including increased line loss and reduced power supply quality caused by insufficient capacitive reactive power.To reduce the capacity,voltage,and current stress of an active module of a compensation device and improve the cost performance of the device,an improved hybrid reactive power compensation system based on a fixed capacitor(FC)and a static synchronous compensator(STATCOM)is proposed.The topological structure and basic operating principle of the proposed reactive power compensation system are introduced.In addition,from the perspectives of output voltage,current,power,loss of the active part,and system compensation cost,the performances of the proposed reactive compensator and the inductively coupled STATCOM(L-STATCOM)are compared and analyzed.Furthermore,the key parameters of the proposed system are designed,and the joint optimization control strategy of the FC and STATCOM is studied.The correctness and effectiveness of the proposed topology structure and control method are verified by simulations.展开更多
Due to the fact that a high share of renewable energy sources(RESs)are connected to high-voltage direct current(HVDC)sending-end AC power systems,the voltage and frequency regulation capabilities of HVDC sending-end A...Due to the fact that a high share of renewable energy sources(RESs)are connected to high-voltage direct current(HVDC)sending-end AC power systems,the voltage and frequency regulation capabilities of HVDC sending-end AC power systems have diminished.This has resulted in potential system operating problems such as overvoltage and overfrequency,which occur simultaneously when block faults exist in the HVDC link.In this study,a steady-state voltage security-constrained optimal frequency control method for weak HVDC sending-end AC power systems is proposed.The integrated virtual inertia control of RESs is employed for system frequency regulation.Additional dynamic reactive power compensation devices are utilized to control the voltage of all nodes meet voltage security constraints.Then,an optimization model that simultaneously considers the frequency and steady-state voltage security constraints for weak HVDC sending-end AC power systems is established.The optimal control scheme with the minimum total cost of generation tripping and additional dynamic reactive power compensation required is obtained through the optimization solution.Simulations are conducted on a modified IEEE 9-bus test system and practical Qing-Yu line commutated converter based HVDC(LCC-HVDC)sending-end AC power system to verify the effectiveness of the proposed method.展开更多
Intermittent new energy delivery requires increasing the flexibility of ultra-high voltage direct current(DC)power adjustment.Based on a converter steady-state model and a DC power model,the control angle constraints ...Intermittent new energy delivery requires increasing the flexibility of ultra-high voltage direct current(DC)power adjustment.Based on a converter steady-state model and a DC power model,the control angle constraints of a converter valve are relaxed for power regulation.In this paper,a flexible DC power control method based on a fixed tap changer position is proposed.The initial ratio of the converter transformer is optimized.The effects of the fixed-tap changer position control on the control angle,reactive power compensation,and commutation failure are analyzed.The new control method allows a DC system to operate at a large angle and increase the additional reactive power loss while improving the commutation security margin.Steady-state and electromagnetic transient simulations in the CIGRE test system verify the validity of the method proposed in this paper and the correctness of the analysis conclusions.展开更多
The unintentional islanding of micro-grid may cause negative impacts on distribution loads and distributed generations,so it must be detected within the acceptable duration.In this paper a new islanding detection algo...The unintentional islanding of micro-grid may cause negative impacts on distribution loads and distributed generations,so it must be detected within the acceptable duration.In this paper a new islanding detection algorithm is proposed.This algorithm introduces the frequency feedback method by the reactive power compensation to derive the frequency continuous shift. Accordingly,the islanding can be detected by monitoring the frequency within 0.1 s.The simulation results prove that this algorithm has extremely small non-detection zone,and meanwhile it presents an excellent islanding detection speed as well.展开更多
With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in m...With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in most cases,the areas with a plenty of wind resources do not have strong grid structures.Furthermore,the characteristics of wind power dictate that wind turbines need to absorb reactive power during operation.Because of the strong correlation between voltage stability and systems' reactive power,the impacts of wind integration on voltage stability has become an important issue.Based on the power system simulation software DIgSILENT and combined analysis of actual practice,this paper investigates the impacts of two types of wind farms on voltage stability:namely a type of wind farms which are constituted by constant speed wind turbines based on common induction generators(IG) and another type of wind farms which are constituted by VSCF wind turbines based on doubly-fed induction generators(DFIG).Through investigation the critical fault clearing time is presented for different outputs of wind farms.Moreover,the impacts of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient voltage stability in IG-based wind farms are studied to improve the security and stability of the Jiangsu power grid after the integration of large scale wind power.展开更多
The aim of this paper is to present the concept of a simple and cheap upgrade for electric water boilers, allowing them to provide power quality services to the distribution grid. The upgrade requires only minimum add...The aim of this paper is to present the concept of a simple and cheap upgrade for electric water boilers, allowing them to provide power quality services to the distribution grid. The upgrade requires only minimum additional hardware and it is easily installable. “Smart Boilers”, as the upgraded boilers are named, perform precise active and reactive power control, but most significantly mitigate line current harmonics. Αctive and reactive power control is implemented by appropriate regulation of the modulation sinewave amplitude and phase, respectively. This type of control is easily customizable in order to accommodate a variety of power quality targets, depending on the required level of services and available grid monitoring equipment. The method used for line current harmonic compensation is based on the injection of mirror harmonics created at the modulation stage of the converter. It is indifferent of harmonic source: it is equally successful at mitigating harmonics caused by the power electronic converter of the Smart Boiler, other sources of current harmonics or loads. The achieved grid services are clearly beyond the “on/off” operation of electric boilers, currently implemented by Demand Side Management (DSM) in order to shift load away from peak hours. It has been demonstrated through simulations, that Smart Boilers can assist voltage regulation at terminal buses, compensate reactive power and suppress harmonic currents at lines.展开更多
Conversion of hourly dispatch cases derived using DC optimal power flow(DCOPF)to AC power flow(ACPF)case is often challenging and requires arduous human analysis and intervention.This paper proposes an automated two-s...Conversion of hourly dispatch cases derived using DC optimal power flow(DCOPF)to AC power flow(ACPF)case is often challenging and requires arduous human analysis and intervention.This paper proposes an automated two-stage approach to solve ACPF formulated from DCOPF dispatch cases.The first stage involved the use of the conventional Newton Raphson method to solve the ACPF from flat start,then ACPF cases that are unsolvable in the first stage are subjected to a hotstarting incremental method,based on homotopy continuation,in the second stage.Critical tasks such as the addition of reactive power compensation and tuning of voltage setpoints that typically require human intervention were automated using a criteriabased selection method and optimal power flow respectively.Two datasets with hourly dispatches for the 243-bus reduced WECC system were used to test the proposed method.The algorithm was able to convert 100%of the first set of dispatch cases to solved ACPF cases.In the second dataset with suspect dispatch cases to represent an extreme conversion scenario,the algorithm created solved ACPF cases that satisfied a defined success criterion for 77.8%of the dispatch cases.The average run time for the hotstarting algorithm to create a solved ACPF case for a dispatch was less than 1 minute for the reduced WECC system.展开更多
Hybrid reactive power compensation(HRPC)combines step-controlled shunt reactors and series compensation,and will be employed in ultra-high-voltage(UHV)power systems.The single-phase auto-reclosure characteristics of s...Hybrid reactive power compensation(HRPC)combines step-controlled shunt reactors and series compensation,and will be employed in ultra-high-voltage(UHV)power systems.The single-phase auto-reclosure characteristics of secondary arcs in systems with HRPC require further investigation.In this paper,both the arc-recalling voltage and subsidiary variations in arc current are investigated with and without HRPC.The frequency components of the secondary arc current and variations in arcing time are analyzed for various influential factors,such as the neutral reactor,arc resistance,fault location,degrees of compensation of HRPC,and the length of the transmission line.The non-dominated sorting genetic algorithm II(NSGA-II)and support vector machine regression are combined to create a multi-variable dependent forecasting algorithm to predict the characteristics of the secondary arc in UHV systems with HRPC.This paper provides a theoretical reference for optimizing the parameters of HRPC,and for developing adaptive auto-reclosure schemes and protection equipment.展开更多
文摘In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.
文摘This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.
文摘The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.
文摘Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyristor control reactor reac- tive power compensation system and TCR single closed loop strategy was pro- posed. In addition, as digital simulation software, Arene was applied to simulate the Jining coal mine No.2 system. The simulation results validate that the design is effective to improve power factor and stabilization of the system.
文摘In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.
文摘The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.
基金supported by the Science and Technology Project of State Grid Corporation Headquarters(No.5100-202323008A-1-1-ZN).
文摘As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wind power(WP).Due to the randomness of WP output,higher requirements are put forward for the voltage stability of each node of the regional power grid,and various reactive power compensation devices(RPCDs)need to be rationally configured to meet the stable operation requirements of the system.This paper proposes an optimal configuration method for multi-type RPCDs in regional power grids with a high proportion of WP.The RPCDs are located according to the proposed static voltage stability index(VSI)and dynamicVSI based on dynamic voltage drop area,and the optimal configuration model of RPCDs is constructed with the lowest construction cost as the objective function to determine the installed capacity of various RPCDs.Finally,the corresponding regional power grid model for intensive access to WFs is constructed on the simulation platform to verify the effectiveness of the proposed method.
文摘This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.
文摘Effective reactive power compensation is very important to the safe,economical and high quality running of power system.The principle and characteristic of several main reactive power compensation devices were analyzed and compared in details, and the development trend and application prospect were viewed.
文摘Power quality is a complex term that is defined by the legislation, but also as an obligation of the supplier and customer. The customer must return the negative effects of its consumers (taking reactive power, harmonic generation, phase unbalance) down to the prescribed limits. This primarily refers to the presence of non-linear consumers, leading to distortion of the basic parameters of voltage and current, in steady or transient conditions, and therefore the deformation of waveform. One way to reduce the negative feedback effects, especially with inductive loads, is the reactive energy compensation. The paper presents one of the solution for reactive power compensation, applied on the pumping station of public company "Waterworks and Sewerage---Bar", Bar.
文摘Distributed photovoltaic(PV)systems play an important role in supplying many recent microgrids.The absence of reactive power support for these small-scale PV plants increases total microgrid losses and voltage-instability threats.Reactive power compensations(RPCs)should be integrated to enhance both microgrid losses and voltage profiles.RPC planning is a non-linear,complicated problem.In this paper,a combined RPC allocation and sizing algorithm is proposed.The RPC-integrating buses are selected using a new adaptive approach of loss sensitivity analysis.In the sizing process,the uncertainties in PV power and load demand are modelled using proper probability density functions.Three simulation techniques for handling uncertainties are compared to define the accurate and fast accurate method as follows:Monte Carlo simulation(MCS),scenario tree construction and reduction method,and point estimation method(PEM).The load flow equations are solved using the forward-backward sweep method.RPCs are optimally sized using the beetle-antenna-based strategy with grey wolf optimization(BGWO)to overcome the local minima problem that appeared in the other pre-proposed methods.Results have been compared using particle swarm optimization and conventional GWO.The proposed model is verified using the IEEE 33 radial bus system.The expected power loss has been reduced by 22% and 31% using compensation of 26% and 44%,respectively.The results obtained prove that the BGWO optimal power flow and PEM to handle the uncertainty can significantly reduce the computation time with sufficient accuracy.Under the study conditions,PEM reduces the computation time to 4 minutes compared with 4 hours for MCS,with only a 3% error compared with MCS as an uncertainty benchmark method.
基金This work was supported by the Science and Technology Project of State Grid Corporation of China:Analysis of System Operation Characteristics and Control Technology after Half-wavelength Transmission Projects are Put into Operation(SGTYHT15-JS-191).
文摘Half-wavelength AC transmission(HWACT)refers to transmission along lines with an electrical distance of half the power frequency wavelength.The voltage amplitude at the sending terminal is equal to that at the receiving terminal in steady-state.Furthermore,the voltage at the receiving terminal does not vary with load.However,the electrical distance has been extended in actual HWACT lines because of the impact of the equivalent power supply impedance,so the attractive characteristics no longer hold.As a result,reactive power compensation methods with constant power factor and constant voltage are needed and these are presented in this paper.The steady-state operational characteristics,the calculation methods of additional reactive power compensation and the admittance of a controllable shunt reactor are also given.The methods proposed in this paper are relatively simple to implement,and the calculations involved are straightforward,resulting in effective voltage stabilization.The results indicate that such compensation methods can increase the transmission capacity while maintaining a relatively low voltage along the line.
基金Supported by the General Project of Hunan Natural Science Foundation(2021JJ30715)the Scientific Research Fund of Hunan Provincial Education Department(20B029)the Graduate Research Innovation Project of Changsha University of Science&Technology(CX2021SS52).
文摘The purpose of this study is to solve the main problems in distribution networks,including increased line loss and reduced power supply quality caused by insufficient capacitive reactive power.To reduce the capacity,voltage,and current stress of an active module of a compensation device and improve the cost performance of the device,an improved hybrid reactive power compensation system based on a fixed capacitor(FC)and a static synchronous compensator(STATCOM)is proposed.The topological structure and basic operating principle of the proposed reactive power compensation system are introduced.In addition,from the perspectives of output voltage,current,power,loss of the active part,and system compensation cost,the performances of the proposed reactive compensator and the inductively coupled STATCOM(L-STATCOM)are compared and analyzed.Furthermore,the key parameters of the proposed system are designed,and the joint optimization control strategy of the FC and STATCOM is studied.The correctness and effectiveness of the proposed topology structure and control method are verified by simulations.
基金supported in part by the National Key R&D Program of China(No.2022YFB2402700)the Science and Technology Project of State Grid Corporation of China(No.52272222001J).
文摘Due to the fact that a high share of renewable energy sources(RESs)are connected to high-voltage direct current(HVDC)sending-end AC power systems,the voltage and frequency regulation capabilities of HVDC sending-end AC power systems have diminished.This has resulted in potential system operating problems such as overvoltage and overfrequency,which occur simultaneously when block faults exist in the HVDC link.In this study,a steady-state voltage security-constrained optimal frequency control method for weak HVDC sending-end AC power systems is proposed.The integrated virtual inertia control of RESs is employed for system frequency regulation.Additional dynamic reactive power compensation devices are utilized to control the voltage of all nodes meet voltage security constraints.Then,an optimization model that simultaneously considers the frequency and steady-state voltage security constraints for weak HVDC sending-end AC power systems is established.The optimal control scheme with the minimum total cost of generation tripping and additional dynamic reactive power compensation required is obtained through the optimization solution.Simulations are conducted on a modified IEEE 9-bus test system and practical Qing-Yu line commutated converter based HVDC(LCC-HVDC)sending-end AC power system to verify the effectiveness of the proposed method.
基金an independent research project from the Shandong Electric Power Research Institute,“Research on the control method of DC power under fixed converter transformer tap-changer position”(ZY-2020-01)Based on the achievement,a national invention patent(No.2020112240143)has been applied.
文摘Intermittent new energy delivery requires increasing the flexibility of ultra-high voltage direct current(DC)power adjustment.Based on a converter steady-state model and a DC power model,the control angle constraints of a converter valve are relaxed for power regulation.In this paper,a flexible DC power control method based on a fixed tap changer position is proposed.The initial ratio of the converter transformer is optimized.The effects of the fixed-tap changer position control on the control angle,reactive power compensation,and commutation failure are analyzed.The new control method allows a DC system to operate at a large angle and increase the additional reactive power loss while improving the commutation security margin.Steady-state and electromagnetic transient simulations in the CIGRE test system verify the validity of the method proposed in this paper and the correctness of the analysis conclusions.
基金National High-Tech R&D Program of China(No.2007AA05Z241).
文摘The unintentional islanding of micro-grid may cause negative impacts on distribution loads and distributed generations,so it must be detected within the acceptable duration.In this paper a new islanding detection algorithm is proposed.This algorithm introduces the frequency feedback method by the reactive power compensation to derive the frequency continuous shift. Accordingly,the islanding can be detected by monitoring the frequency within 0.1 s.The simulation results prove that this algorithm has extremely small non-detection zone,and meanwhile it presents an excellent islanding detection speed as well.
文摘With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in most cases,the areas with a plenty of wind resources do not have strong grid structures.Furthermore,the characteristics of wind power dictate that wind turbines need to absorb reactive power during operation.Because of the strong correlation between voltage stability and systems' reactive power,the impacts of wind integration on voltage stability has become an important issue.Based on the power system simulation software DIgSILENT and combined analysis of actual practice,this paper investigates the impacts of two types of wind farms on voltage stability:namely a type of wind farms which are constituted by constant speed wind turbines based on common induction generators(IG) and another type of wind farms which are constituted by VSCF wind turbines based on doubly-fed induction generators(DFIG).Through investigation the critical fault clearing time is presented for different outputs of wind farms.Moreover,the impacts of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient voltage stability in IG-based wind farms are studied to improve the security and stability of the Jiangsu power grid after the integration of large scale wind power.
文摘The aim of this paper is to present the concept of a simple and cheap upgrade for electric water boilers, allowing them to provide power quality services to the distribution grid. The upgrade requires only minimum additional hardware and it is easily installable. “Smart Boilers”, as the upgraded boilers are named, perform precise active and reactive power control, but most significantly mitigate line current harmonics. Αctive and reactive power control is implemented by appropriate regulation of the modulation sinewave amplitude and phase, respectively. This type of control is easily customizable in order to accommodate a variety of power quality targets, depending on the required level of services and available grid monitoring equipment. The method used for line current harmonic compensation is based on the injection of mirror harmonics created at the modulation stage of the converter. It is indifferent of harmonic source: it is equally successful at mitigating harmonics caused by the power electronic converter of the Smart Boiler, other sources of current harmonics or loads. The achieved grid services are clearly beyond the “on/off” operation of electric boilers, currently implemented by Demand Side Management (DSM) in order to shift load away from peak hours. It has been demonstrated through simulations, that Smart Boilers can assist voltage regulation at terminal buses, compensate reactive power and suppress harmonic currents at lines.
基金This work was supported by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877the CURENT Industry Partnership Program,and the Bredesen Centre,University of Tennessee,Knoxville.
文摘Conversion of hourly dispatch cases derived using DC optimal power flow(DCOPF)to AC power flow(ACPF)case is often challenging and requires arduous human analysis and intervention.This paper proposes an automated two-stage approach to solve ACPF formulated from DCOPF dispatch cases.The first stage involved the use of the conventional Newton Raphson method to solve the ACPF from flat start,then ACPF cases that are unsolvable in the first stage are subjected to a hotstarting incremental method,based on homotopy continuation,in the second stage.Critical tasks such as the addition of reactive power compensation and tuning of voltage setpoints that typically require human intervention were automated using a criteriabased selection method and optimal power flow respectively.Two datasets with hourly dispatches for the 243-bus reduced WECC system were used to test the proposed method.The algorithm was able to convert 100%of the first set of dispatch cases to solved ACPF cases.In the second dataset with suspect dispatch cases to represent an extreme conversion scenario,the algorithm created solved ACPF cases that satisfied a defined success criterion for 77.8%of the dispatch cases.The average run time for the hotstarting algorithm to create a solved ACPF case for a dispatch was less than 1 minute for the reduced WECC system.
文摘Hybrid reactive power compensation(HRPC)combines step-controlled shunt reactors and series compensation,and will be employed in ultra-high-voltage(UHV)power systems.The single-phase auto-reclosure characteristics of secondary arcs in systems with HRPC require further investigation.In this paper,both the arc-recalling voltage and subsidiary variations in arc current are investigated with and without HRPC.The frequency components of the secondary arc current and variations in arcing time are analyzed for various influential factors,such as the neutral reactor,arc resistance,fault location,degrees of compensation of HRPC,and the length of the transmission line.The non-dominated sorting genetic algorithm II(NSGA-II)and support vector machine regression are combined to create a multi-variable dependent forecasting algorithm to predict the characteristics of the secondary arc in UHV systems with HRPC.This paper provides a theoretical reference for optimizing the parameters of HRPC,and for developing adaptive auto-reclosure schemes and protection equipment.