期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Reactive ball-milling synthesis of Co-Fe bimetallic catalyst for efficient hydrogenation of carbon dioxide to value-added hydrocarbons
1
作者 Haipeng Chen Chenwei Wang +5 位作者 Mengyang Zheng Chenlei Liu Wenqiang Li Qingfeng Yang Shixue Zhou Xun Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期210-218,共9页
Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi... Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons. 展开更多
关键词 reactive ball milling Co-Fe bimetallic catalyst Carbon dioxide Value-added hydrocarbon C–C coupling reaction
下载PDF
Hydrogen storage properties of Li-Mg-N-B-H/ZrCoH_(3) composite with different ball-milling atmospheres 被引量:1
2
作者 Zhi-Nian Li Hao-Chen Qiu +5 位作者 Xiu-Mei Guo Jian-Hua Ye Shu-Mao Wang Li-Jun Jiang Jun Du Fermin Cuevas 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期1036-1042,共7页
Li-Mg-N-B-H/ZrCoH_(3) composites were successfully synthesized by ball milling of the reactants under argon and hydrogen atmosphere,respectively.The composite synthesized by reactive ball milling(RBM)under hydrogen ha... Li-Mg-N-B-H/ZrCoH_(3) composites were successfully synthesized by ball milling of the reactants under argon and hydrogen atmosphere,respectively.The composite synthesized by reactive ball milling(RBM)under hydrogen has the best hydrogen storage properties.It can desorb 3.71 wt%hydrogen in 60 min at 150℃under pressure of 0.1 MPa,and the dehydrogenation capacity reaches 4.59 wt%in 8 h.For the re-hydrogenation,5.27 wt%hydrogen was absorbed in only 10 min at 150℃under H_(2) pressure of 8 MPa.The phases of the as-milled and subsequently dehydrogenated and re-hydrogenated samples were determined by X-ray diffraction(XRD).The microstructures and elemental distributions were characterized by scanning electron microscope(SEM)and energy-dispersive spectrometer(EDS)measurements.It is shown that Mg is in situ hydrogenated and introduced homogeneous distribution of ZrCoH_(3) particles during the RBM process under hydrogen atmosphere.The activation energies for the composites were calculated by Kissinger method through differential scanning calorimetric(DSC)measurements for the dehydrogenation process with different heating rates.It is determined that the activation energy for the Li-Mg-N-B-H/ZrCoH_(3) composite synthesized by RBM under hydrogen is 79.9 kJ·mol^(-1),which is14 kJ·mol^(-1) lower than that for the sample without ZrCoH_(3) addition.The N-H bond energies were analyzed by infrared(IR)absorption spectrum,and the reasons for weakening of the N-H bond were further discussed. 展开更多
关键词 Hydrogen storage Li-Mg-N-B-H reactive ball milling Activation energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部