The mass and thermal coupling makes the control of the reactive double dividing-wall distillation column(R-DDWDC) an especially challenging issue with a highly interactive nature. With reference to the separation of a...The mass and thermal coupling makes the control of the reactive double dividing-wall distillation column(R-DDWDC) an especially challenging issue with a highly interactive nature. With reference to the separation of an ideal endothermic quaternary reversible reaction with the most unfavorable ranking of relative volatilities(A + B ■ C + D with α_(A)>α_(C)>α_(D)>α_(B)), the operation rationality of the R-DDWDC is studied in this contribution. The four-point single temperature control system leads to great steady-state discrepancies in the compositions of products C and D and the reason stems essentially from the failure in keeping strictly the stoichiometric ratio between reactants A and B. A temperature plus temperature cascade control scheme is then employed to reinforce the stoichiometric ratio control and helps to secure a substantial abatement in the steady-state discrepancies. A temperature difference plus temperature cascade control scheme is finally synthesized and leads even to better performance than the most effective double temperature difference control scheme. These outcomes reveal not only the operation feasibility of the R-DDWDC but also the general significance of the proposed temperature difference plus temperature cascade control scheme to the inferential control of any other complicated distillation columns.展开更多
For dividing-wall distillation columns(DWDCs) separating a heavy-component dominated and wide boiling-point ternary(HCDWBT) mixture, a significant amount of excessive heat exists inevitably in stripping the heavy-comp...For dividing-wall distillation columns(DWDCs) separating a heavy-component dominated and wide boiling-point ternary(HCDWBT) mixture, a significant amount of excessive heat exists inevitably in stripping the heavy-component from the intermediate-component and it can be employed to initiate the development of vapor recompression heat pump(VRHP) assisted DWDC(VRHP-DWDC). Despite dividing wall may locate in the top, middle, and bottom, the optimum VRHP-DWDC is found to involve uniformlytwo VRHP circles. While the first one serves to compress and transform the excessive heat resulted from the separation of the heavy-component from the intermediate-component, the second one to compress and transform the overhead vapor stream of the light-component pre-heated sequentially with the condensate from the first one and the bottom product stream of the heavy-component, both releasing the temperature-elevated latent heat to the pre-fractionator's or common stripping section. The processing of two HCDWBT mixtures of benzene/toluene/o-xylene and n-pentane/n-hexane/n-heptane are selected to assess the derived optimum topological configurations of the VRHP-DWDC and their optimality is confirmed through detailed comparisons with the DWDC and two VRHP-DWDCs involving only one VRHP circle. The proposed strategy helps to tap the full potential of the VRHP-DWDC with considerably alleviated complication in process development.展开更多
Reactive distillation(RD) process is an innovative hybrid process combining reaction with distillation, which has recently come into sharp focus as a successful case of process intensification. Considered as the most ...Reactive distillation(RD) process is an innovative hybrid process combining reaction with distillation, which has recently come into sharp focus as a successful case of process intensification. Considered as the most representative case of process intensification, it has been applied for many productions, especially for production of ester compounds. However, such problems existing in the RD system for ester productions are still hard to solve,as the removal of the water which comes from the esterification, and the separation of the azeotropes of ester–alcohol(–water). Many methods have been studying on the process to solve the problems resulting in further intensification and energy saving. In this paper, azeotropic–reactive distillation or entrainer enhanced reactive distillation(ERD) process, reactive extractive distillation(RED) process, the method of co-production in RD process, pressure-swing reactive distillation(PSRD) process, reactive distillation–pervaporation coupled process(RD–PV), are introduced to solve the problems above, so the product(s) can be separated efficiently and the chemical equilibrium can be shifted. Dividing-wall column(DWC) structure and novel methods of loading catalyst are also introduced as the measures to intensify the process and save energy.展开更多
Reactive distillation processes for synthesis of ethylene glycol (EG) and ethyl tert-butyl ether (ETBE) were modeled with the simulation package ASPEN PLUS. The input multiplicity and output multiplicity were dis- cus...Reactive distillation processes for synthesis of ethylene glycol (EG) and ethyl tert-butyl ether (ETBE) were modeled with the simulation package ASPEN PLUS. The input multiplicity and output multiplicity were dis- cussed with the method of sensitivity analysis for both cases. In EG production process, steady state multiplicities were studied in terms of effective liquid holdup volume and boil-up ratio. In ETBE synthesis process, the user ki- netic subroutine was supplied into ASPEN PLUS firstly, and then the composition, temperature and reaction-rate profiles within the reactive distillation column were presented in detail. A set of stable solution branches based on distinct initial guesses for a range of boil-up ratio were found in EG synthesis. Input multiplicities were observed for a range of reboiler duty at several values of reflux ratio for ETBE synthesis process. These results can be used to avoid excessive energy consumption and achieve optimum design of reactive distillation column.展开更多
Reactive distillation processes for synthesis of ethylene glycol (EG) and ethyl tert-butyl ether (ETBE) were modeled with the simulation package ASPEN PLUS. The input multiplicity and output multiplicity were disc...Reactive distillation processes for synthesis of ethylene glycol (EG) and ethyl tert-butyl ether (ETBE) were modeled with the simulation package ASPEN PLUS. The input multiplicity and output multiplicity were discussed with the method of sensitivity analysis for both cases. In EG production process, steady state multiplicities were studied in terms of effective liquid holdup volume and boil-up ratio. In ETBE synthesis process, the user kinetic subroutine was supplied into ASPEN PLUS firstly, and then the composition, temperature and reaction-rate profiles within the reactive distillation column were presented in detail. A set of stable solution branches based on distinct initial guesses for a range of boil-up ratio were found in EG synthesis. Input multiplicities were observed for a range of reboiler duty at several values of reflux ratio for ETBE synthesis process. These results can be used to avoid excessive energy consumption and achieve optimum design of reactive distillation column.展开更多
Temperature inferential control (TIC) is studied for a reactive distillation column with double reactive sections (RDC-DRSs) processing a hypothetical two-stage consecutive reversible reaction (A + B■C + D, C + B■E ...Temperature inferential control (TIC) is studied for a reactive distillation column with double reactive sections (RDC-DRSs) processing a hypothetical two-stage consecutive reversible reaction (A + B■C + D, C + B■E + D with αD > αB > αC > αA > αE). Because of the complicated dynamic behaviors, the controlled stages by sensitivity analysis lead to great steady-state deviations (SSDs) in top and bottom product purities. Since TIC involves considerably reduced settling times in comparison with direct composition control, small SSDs in product qualities correspond generally to small transient deviations (TDs) in product qualities. An objective function that measures SSDs in product qualities is formulated to represent the performance of a TIC system and an iterative procedure is devised to search for the best control configuration. The application of the procedure to the RDC-DRS gives considerably suppressed TDs and SSDs in top and bottom product qualities as compared with the one by sensitivity analysis. The method is simpler in principle and less computationally intensive than the current practice. These striking outcomes show the effectiveness of the proposed principle for the development of TIC systems for complicated reactive distillation columns.展开更多
A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-b...A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-butanol. The RED-IL process was simulated via a rigorous model, and high purity products of methanol and n-butyl acetate can be obtained in such a process. The effects of reflux ratio, feed mode, holdup, feed location, entrainer ratio and catalyst concentration on RED-IL process were investigated. The conversion of methyl acetate and purities of products increase with the holdup in column, entrainer ratio and catalyst content. An optimal reflux ratio exists in RED-IL process. Comparing to the mixed-feed mode, the segregated-feed mode is more effective, in which the optimal feed locations of reactants exist.展开更多
A new separation method, reactive extractive distillation, was put forward for separating water and acetic acid. The separation mechanism was analyzed through infrared spectra technique. Isobaric vapor-liquid equilibr...A new separation method, reactive extractive distillation, was put forward for separating water and acetic acid. The separation mechanism was analyzed through infrared spectra technique. Isobaric vapor-liquid equilibrium (VLE) data at 101.33 kPa for the binary or ternary systems consisting of water, acetic acid and tributylamine were measured. The activity coefficients were correlated by using Wilson, NRTL, and UNIQUAC Equations.The VLE experiment showed that tributylamine could enhance the relative volatility of water to acetic acid. An extractive distillation experiment was carried out and proved that tributylamine was a good extractive solvent.展开更多
In this paper, a reactive distillation (RD) column was applied for synthesis n-butyl acetate from n-butanol and acetic acid. The Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model and an equilibrium stage model f...In this paper, a reactive distillation (RD) column was applied for synthesis n-butyl acetate from n-butanol and acetic acid. The Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model and an equilibrium stage model for separation were employed to study the RD process. The results obtained from the equilibrium stage model agreed well with the experiments. The effects of operating variables on the n-butanol conversion and n-butyl acetate purity were further investigated. The optimal column configuration for the production of n-butyl acetate was designed with 5 rectifying stages, 8 reaction stages and 13 stripping stages by the simulation study. According to the simulation results, n-butanol conversion and n-butyl acetate purity all reached greater than 96%.展开更多
Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were...Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were investigated, and the sensitivity analysis was conducted to obtain the appropriate design values. The thermodynamic analysis and economics evaluation were performed to estimate the superiority of the thermally coupled designs over the base case. The proposed biodiesel production processes were simulated using the simulator Aspen Plus, and calculation results show that the exergy loss and economic cost in the two thermally coupled designs can be greatly reduced. It is found that the thermally coupled side-stripper reactive distillation design provides more economic benefits than the side-rectifier one. The dynamic performance of the thermally coupled side-stripper design was investigated and the results showed that the proposed control structure could effectively handle large feed disturbances.展开更多
Reactive dividing-wall column(RDWC) technology plays a critical role in the energy saving and high efficiency of chemical process.In this article, the process of co-producing ethyl acetate(EA) and n-butyl acetate(BA) ...Reactive dividing-wall column(RDWC) technology plays a critical role in the energy saving and high efficiency of chemical process.In this article, the process of co-producing ethyl acetate(EA) and n-butyl acetate(BA) with RDWC was studied.BA was not only the product, but also acted as entrainer to remove the water generated by the two esterification reactions.Experiments and simulations of the co-production process were carried out.It was found that the experimental results were in good agreement with the simulation results.Two kinds of RDWC structures(RDWC-FC and RDWC-RS) were proposed, and the co-production process operating parameters of the two types of RDWC were optimized by Aspen Plus respectively.The optimal operating parameters of the RDWC-FC were determined as follows: 0.6 of the reflux ratio of aqueous phase(RR), 0.66 of the vapor split(R_V) and 0.51 of the liquid split(R_L).And the optimal operating parameters of the RDWC-RS were shown as follows: RR was 0.295 and R_V was 0.61.Furthermore, the energy saving analysis of the co-production process was based on the annual output of 10000 tons of EA, compared with the traditional reaction distillation(RD) to prepare EA and BA, the reboiler duty of the RDWC-FC column could save 20.4%, TAC saving 23.6%; RDWC-RS reboiler energy consumption could save 17.0%, TAC 22.2%.展开更多
In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol ...In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol (TAA). Pervaporation, an efficient membrane separation technique, is integrated with the reactive distillation for enhancing the efficiency of TAEE production. A user-defined Fortran subroutine of a pervaporation unit is developed, allowing the design and simulation of the hybrid process of reactive distillation and pervaporation in Aspen Plus simulator. The performance of such a hybrid process is analyzed and the results indicate that the integration of the reactive distillation with the pervaporation increases the conversion of TAA and the purity of TAEE product, compared with the conventional reactive distillation.展开更多
Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distilla...Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distillation,but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium,which is difficult to initialize and tune.In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system(ANFIS) ,which is a model base estimator,is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation.The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics.The mathematical model is verified by pilot plant data.The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation.The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme.展开更多
A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analys...A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.展开更多
Five Br?nsted acidic ionic liquids(ILs) were prepared and characterized by FT-IR,~1H NMR and ^(13)C NMR. Their catalytic activities for the synthesis of 2-propanol(IPOH) via transesterification of isopropyl acetate(IP...Five Br?nsted acidic ionic liquids(ILs) were prepared and characterized by FT-IR,~1H NMR and ^(13)C NMR. Their catalytic activities for the synthesis of 2-propanol(IPOH) via transesterification of isopropyl acetate(IPAc) with methanol(Me OH) were investigated. Among all the tested ILs, [Ps-mim]HSO_4 performed best and was used as catalyst for further studies. The reaction kinetics were carried out to correlate the parameters in a homogeneous second order kinetic model. It has been found that there is close agreement between the calculated and experimental values. The high-pressure batch reactive distillation experimental apparatus was set up in order to enhance the conversion of IPAc. A high conversion of IPAc of 99.4% was obtained under the optimal reaction conditions. The catalyst [Ps-mim]HSO_4 can be recycled easily by a rotary evaporator and reused without any further treatment. The catalyst had been repeatedly used for four times and no obvious changes in the structure of catalyst could be observed.展开更多
Dimethyl carbonate is an environmentally benign and biodegradable chemical.Based on integration of reactive distillation and pressure-swing distillation technologies,a novel process for synthesis of dimethyl carbonate...Dimethyl carbonate is an environmentally benign and biodegradable chemical.Based on integration of reactive distillation and pressure-swing distillation technologies,a novel process for synthesis of dimethyl carbonate through transesterification with propylene carbonate and methanol has been developed by Huang et al.In this work,the optimization of this process was performed by minimizing the total TAC.The results show that the optimal design flowsheet can save energy consumption by 18.6% with the propylene carbonate conversion of 99.9%.Then,an effective plant-wide control structure for the process was developed.Dynamic simulation results demonstrate that the temperature/flow rate cascade control plus with simple temperature control can keep not only product purity but also the conversion of the reactant at their desired values in the face of the disturbance in reactant feed flow rate and feed composition.展开更多
The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal econo...The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal economic design, the dual-composition control structure and dual-temperature control structure are designed respectively for the benzene chlorine consecutive reactive distillation process. The effectiveness and robustness are analyzed comparably for the disturbance resistance in terms of changes of production rate and feed composition. Results show that dual-temperature control with propose selection of tray temperatures and the optimal profile of the set point can provide better transient process performance than the composition control structure.展开更多
In this paper, the novel control structures of differential pressure thermally coupled reactive distillation process for methyl acetate hydrolysis were proposed. The RadFrac module of Aspen Plus was adopted in the ste...In this paper, the novel control structures of differential pressure thermally coupled reactive distillation process for methyl acetate hydrolysis were proposed. The RadFrac module of Aspen Plus was adopted in the steady-state simulation. Sensitive analysis was applied to find the stable intial value and provide a basis for the improved control structure design. The Aspen Dynamics software was adopted to study the process dynamic behaviors, and two novel control structures provided with feed ratio controllers and sensitive tray temperature controllers were proposed. The reflux ratio controllers were applied in the improved novel control structures. Both control structures abandoned the composition controllers that were replaced by simpler controllers with which the product purity could meet the specification requiring under a ± 20% disturbance to the total feed flowrate / MeAc composition.展开更多
Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation ha...Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation has been carried out to get the characteristics of the reactive distillation. Results from kinetic and thermodynamic analysis indicate that the optimal pressure of this reactive distillation process should be set to higher pressure such as 0.3 or 0.4 MPa. To avoid the recovery of cyclohexanol at the top of the column, an unreactive section should be allocated at the upper column. In addition, the inert component benzene is more unfavorable to the reactive distillation process in comparison with the inert cyclohexane.展开更多
Due to the topological structure of double columns and multiple separating sections in dividing-wall distillation columns(DWDCs),the development of vapor recompressed dividing-wall distillation columns(DWDC-VRHPs)repr...Due to the topological structure of double columns and multiple separating sections in dividing-wall distillation columns(DWDCs),the development of vapor recompressed dividing-wall distillation columns(DWDC-VRHPs)represents a challenging issue with great complexities and tediousness.For the separations of light-component dominated and wide boiling-point ternary mixtures,because the purification of the light-component from the intermediate-and heavy-components incurs the primary energy dissipation,the application of vapor recompressed heat pumps(VRHP)should be aimed to reduce the irreversibility and this leads to the generation of the optimum topological structures of the DWDC-VRHPs,i.e.,a DWDC plus a two-stage VRHP.The first-stage VRHP is to preheat feed,not only taking the advantages of the small temperature elevation available but also favoring the mass transfer between the vapor and liquid phases through feed splitting.The second-stage VRHP is to reduce further separation irreversibility.The philosophy can be applied to any DWDCs no matter where the dividing wall locates.Two case studies on the separations of ternary mixtures of benzene,toluene,and o-xylene and n-pentane,n-hexane,and n-heptane demonstrate the economic optimality of the proposed DWDC-VRHPs and reveal the inherent interplay between internal and external process integration.展开更多
基金the financial support from National Natural Science Foundation of China (21878011)。
文摘The mass and thermal coupling makes the control of the reactive double dividing-wall distillation column(R-DDWDC) an especially challenging issue with a highly interactive nature. With reference to the separation of an ideal endothermic quaternary reversible reaction with the most unfavorable ranking of relative volatilities(A + B ■ C + D with α_(A)>α_(C)>α_(D)>α_(B)), the operation rationality of the R-DDWDC is studied in this contribution. The four-point single temperature control system leads to great steady-state discrepancies in the compositions of products C and D and the reason stems essentially from the failure in keeping strictly the stoichiometric ratio between reactants A and B. A temperature plus temperature cascade control scheme is then employed to reinforce the stoichiometric ratio control and helps to secure a substantial abatement in the steady-state discrepancies. A temperature difference plus temperature cascade control scheme is finally synthesized and leads even to better performance than the most effective double temperature difference control scheme. These outcomes reveal not only the operation feasibility of the R-DDWDC but also the general significance of the proposed temperature difference plus temperature cascade control scheme to the inferential control of any other complicated distillation columns.
基金The financial support from National Natural Science Foundation of China (21878011)。
文摘For dividing-wall distillation columns(DWDCs) separating a heavy-component dominated and wide boiling-point ternary(HCDWBT) mixture, a significant amount of excessive heat exists inevitably in stripping the heavy-component from the intermediate-component and it can be employed to initiate the development of vapor recompression heat pump(VRHP) assisted DWDC(VRHP-DWDC). Despite dividing wall may locate in the top, middle, and bottom, the optimum VRHP-DWDC is found to involve uniformlytwo VRHP circles. While the first one serves to compress and transform the excessive heat resulted from the separation of the heavy-component from the intermediate-component, the second one to compress and transform the overhead vapor stream of the light-component pre-heated sequentially with the condensate from the first one and the bottom product stream of the heavy-component, both releasing the temperature-elevated latent heat to the pre-fractionator's or common stripping section. The processing of two HCDWBT mixtures of benzene/toluene/o-xylene and n-pentane/n-hexane/n-heptane are selected to assess the derived optimum topological configurations of the VRHP-DWDC and their optimality is confirmed through detailed comparisons with the DWDC and two VRHP-DWDCs involving only one VRHP circle. The proposed strategy helps to tap the full potential of the VRHP-DWDC with considerably alleviated complication in process development.
基金Supported by the National Key Research and Development Program of China(2017YFB0602500)the Basic Research Program of Hebei Province(16964502D)
文摘Reactive distillation(RD) process is an innovative hybrid process combining reaction with distillation, which has recently come into sharp focus as a successful case of process intensification. Considered as the most representative case of process intensification, it has been applied for many productions, especially for production of ester compounds. However, such problems existing in the RD system for ester productions are still hard to solve,as the removal of the water which comes from the esterification, and the separation of the azeotropes of ester–alcohol(–water). Many methods have been studying on the process to solve the problems resulting in further intensification and energy saving. In this paper, azeotropic–reactive distillation or entrainer enhanced reactive distillation(ERD) process, reactive extractive distillation(RED) process, the method of co-production in RD process, pressure-swing reactive distillation(PSRD) process, reactive distillation–pervaporation coupled process(RD–PV), are introduced to solve the problems above, so the product(s) can be separated efficiently and the chemical equilibrium can be shifted. Dividing-wall column(DWC) structure and novel methods of loading catalyst are also introduced as the measures to intensify the process and save energy.
基金Key Project of National Natural Science Foundation of China (No.20436040) and the National NaturalScicnce Foundation of China (No.20176044, No.20476084).
文摘Reactive distillation processes for synthesis of ethylene glycol (EG) and ethyl tert-butyl ether (ETBE) were modeled with the simulation package ASPEN PLUS. The input multiplicity and output multiplicity were dis- cussed with the method of sensitivity analysis for both cases. In EG production process, steady state multiplicities were studied in terms of effective liquid holdup volume and boil-up ratio. In ETBE synthesis process, the user ki- netic subroutine was supplied into ASPEN PLUS firstly, and then the composition, temperature and reaction-rate profiles within the reactive distillation column were presented in detail. A set of stable solution branches based on distinct initial guesses for a range of boil-up ratio were found in EG synthesis. Input multiplicities were observed for a range of reboiler duty at several values of reflux ratio for ETBE synthesis process. These results can be used to avoid excessive energy consumption and achieve optimum design of reactive distillation column.
基金Supported by the Key Project of National Natural Science Foundation of China (No.20436040) and the National Natural Scicnce Foundation of China (No.20176044, No.20476084).
文摘Reactive distillation processes for synthesis of ethylene glycol (EG) and ethyl tert-butyl ether (ETBE) were modeled with the simulation package ASPEN PLUS. The input multiplicity and output multiplicity were discussed with the method of sensitivity analysis for both cases. In EG production process, steady state multiplicities were studied in terms of effective liquid holdup volume and boil-up ratio. In ETBE synthesis process, the user kinetic subroutine was supplied into ASPEN PLUS firstly, and then the composition, temperature and reaction-rate profiles within the reactive distillation column were presented in detail. A set of stable solution branches based on distinct initial guesses for a range of boil-up ratio were found in EG synthesis. Input multiplicities were observed for a range of reboiler duty at several values of reflux ratio for ETBE synthesis process. These results can be used to avoid excessive energy consumption and achieve optimum design of reactive distillation column.
基金Supported by the National Natural Science Foundation of China(21376018,21576014,21676011,21808007,and 21878011)the Fundamental Research Funds for the Central Universities(ZY1837)China Postdoctoral Science Foundation(2017M620587)
文摘Temperature inferential control (TIC) is studied for a reactive distillation column with double reactive sections (RDC-DRSs) processing a hypothetical two-stage consecutive reversible reaction (A + B■C + D, C + B■E + D with αD > αB > αC > αA > αE). Because of the complicated dynamic behaviors, the controlled stages by sensitivity analysis lead to great steady-state deviations (SSDs) in top and bottom product purities. Since TIC involves considerably reduced settling times in comparison with direct composition control, small SSDs in product qualities correspond generally to small transient deviations (TDs) in product qualities. An objective function that measures SSDs in product qualities is formulated to represent the performance of a TIC system and an iterative procedure is devised to search for the best control configuration. The application of the procedure to the RDC-DRS gives considerably suppressed TDs and SSDs in top and bottom product qualities as compared with the one by sensitivity analysis. The method is simpler in principle and less computationally intensive than the current practice. These striking outcomes show the effectiveness of the proposed principle for the development of TIC systems for complicated reactive distillation columns.
基金Supported by the Innovation Fund of Tianjin University
文摘A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-butanol. The RED-IL process was simulated via a rigorous model, and high purity products of methanol and n-butyl acetate can be obtained in such a process. The effects of reflux ratio, feed mode, holdup, feed location, entrainer ratio and catalyst concentration on RED-IL process were investigated. The conversion of methyl acetate and purities of products increase with the holdup in column, entrainer ratio and catalyst content. An optimal reflux ratio exists in RED-IL process. Comparing to the mixed-feed mode, the segregated-feed mode is more effective, in which the optimal feed locations of reactants exist.
文摘A new separation method, reactive extractive distillation, was put forward for separating water and acetic acid. The separation mechanism was analyzed through infrared spectra technique. Isobaric vapor-liquid equilibrium (VLE) data at 101.33 kPa for the binary or ternary systems consisting of water, acetic acid and tributylamine were measured. The activity coefficients were correlated by using Wilson, NRTL, and UNIQUAC Equations.The VLE experiment showed that tributylamine could enhance the relative volatility of water to acetic acid. An extractive distillation experiment was carried out and proved that tributylamine was a good extractive solvent.
文摘In this paper, a reactive distillation (RD) column was applied for synthesis n-butyl acetate from n-butanol and acetic acid. The Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model and an equilibrium stage model for separation were employed to study the RD process. The results obtained from the equilibrium stage model agreed well with the experiments. The effects of operating variables on the n-butanol conversion and n-butyl acetate purity were further investigated. The optimal column configuration for the production of n-butyl acetate was designed with 5 rectifying stages, 8 reaction stages and 13 stripping stages by the simulation study. According to the simulation results, n-butanol conversion and n-butyl acetate purity all reached greater than 96%.
基金Financial supports of the National Natural Science Foundation of China(Grant:21276279 and Grant:21476261)the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.15CX06042A)
文摘Decreasing petroleum reserves and growing alternative fuels requirements have promoted the study of biodiesel production. In this work, two thermally coupled reactive distillation designs for biodiesel production were investigated, and the sensitivity analysis was conducted to obtain the appropriate design values. The thermodynamic analysis and economics evaluation were performed to estimate the superiority of the thermally coupled designs over the base case. The proposed biodiesel production processes were simulated using the simulator Aspen Plus, and calculation results show that the exergy loss and economic cost in the two thermally coupled designs can be greatly reduced. It is found that the thermally coupled side-stripper reactive distillation design provides more economic benefits than the side-rectifier one. The dynamic performance of the thermally coupled side-stripper design was investigated and the results showed that the proposed control structure could effectively handle large feed disturbances.
基金Supported by the National Key R&D Program of China(2017YFB0602500)the Key Basic Research Items in Application Basic Research Program of Hebei Province,China(16964502D)
文摘Reactive dividing-wall column(RDWC) technology plays a critical role in the energy saving and high efficiency of chemical process.In this article, the process of co-producing ethyl acetate(EA) and n-butyl acetate(BA) with RDWC was studied.BA was not only the product, but also acted as entrainer to remove the water generated by the two esterification reactions.Experiments and simulations of the co-production process were carried out.It was found that the experimental results were in good agreement with the simulation results.Two kinds of RDWC structures(RDWC-FC and RDWC-RS) were proposed, and the co-production process operating parameters of the two types of RDWC were optimized by Aspen Plus respectively.The optimal operating parameters of the RDWC-FC were determined as follows: 0.6 of the reflux ratio of aqueous phase(RR), 0.66 of the vapor split(R_V) and 0.51 of the liquid split(R_L).And the optimal operating parameters of the RDWC-RS were shown as follows: RR was 0.295 and R_V was 0.61.Furthermore, the energy saving analysis of the co-production process was based on the annual output of 10000 tons of EA, compared with the traditional reaction distillation(RD) to prepare EA and BA, the reboiler duty of the RDWC-FC column could save 20.4%, TAC saving 23.6%; RDWC-RS reboiler energy consumption could save 17.0%, TAC 22.2%.
文摘In this study, a reactive distillation column in which chemical reaction and separation occur simultaneously is applied for the synthesis of tert-amyl ethyl ether (TAEE) from ethanol (EtOH) and tert-amyl alcohol (TAA). Pervaporation, an efficient membrane separation technique, is integrated with the reactive distillation for enhancing the efficiency of TAEE production. A user-defined Fortran subroutine of a pervaporation unit is developed, allowing the design and simulation of the hybrid process of reactive distillation and pervaporation in Aspen Plus simulator. The performance of such a hybrid process is analyzed and the results indicate that the integration of the reactive distillation with the pervaporation increases the conversion of TAA and the purity of TAEE product, compared with the conventional reactive distillation.
文摘Composition estimation plays very important role in plant operation and control.Extended Kalman filter(EKF) is one of the most common estimators,which has been used in composition estimation of reactive batch distillation,but its performance is heavily dependent on the thermodynamic modeling of vapor-liquid equilibrium,which is difficult to initialize and tune.In this paper an inferential state estimation scheme based on adaptive neuro-fuzzy inference system(ANFIS) ,which is a model base estimator,is employed for composition estimation by using temperature measurements in multicomponent reactive batch distillation.The state estimator is supported by data from a complete dynamic model that includes component and energy balance equations accompanied with thermodynamic relations and reaction kinetics.The mathematical model is verified by pilot plant data.The simulation results show that the ANFIS estimator provides reliable and accurate estimation for component concentrations in reactive batch distillation.The estimated states form a basis for improving the performance of reactive batch distillation either through decision making of an operator or through an automatic closed-loop control scheme.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.21276279,21476261)the Key Technologies Development Project of Qingdao Economic and Technological Development Zone(Grant No.2013-1-57)+1 种基金the Fundamental Research Funds for the Central Universities(No.14CX05030ANo.14CX06108A).
文摘A different pressure thermally coupled reactive distillation column(DPT-RD) for the hydrolysis of methyl acetate(Me Ac) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost(TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column(CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.
基金Supported by the National Natural Science Foundation of China(21576053,91534106,21306025)the International S&T Cooperation Program of China(2013DFR90540)+3 种基金the Science Foundation of Distinguished Young Scholars of Fujian(2014J06004)the New Century Excellent Talents in Fujian Province University(JA12014)the Natural Science Foundation of Fujian Province(2016J01689)the Key Project of Fujian Provincial Department of Science and Technology(2014Y0066)
文摘Five Br?nsted acidic ionic liquids(ILs) were prepared and characterized by FT-IR,~1H NMR and ^(13)C NMR. Their catalytic activities for the synthesis of 2-propanol(IPOH) via transesterification of isopropyl acetate(IPAc) with methanol(Me OH) were investigated. Among all the tested ILs, [Ps-mim]HSO_4 performed best and was used as catalyst for further studies. The reaction kinetics were carried out to correlate the parameters in a homogeneous second order kinetic model. It has been found that there is close agreement between the calculated and experimental values. The high-pressure batch reactive distillation experimental apparatus was set up in order to enhance the conversion of IPAc. A high conversion of IPAc of 99.4% was obtained under the optimal reaction conditions. The catalyst [Ps-mim]HSO_4 can be recycled easily by a rotary evaporator and reused without any further treatment. The catalyst had been repeatedly used for four times and no obvious changes in the structure of catalyst could be observed.
基金Supported by the National Natural Science Foundation of China(21306025,21576053)the International Science&Technology Cooperation Program of China(2013DFR90540)
文摘Dimethyl carbonate is an environmentally benign and biodegradable chemical.Based on integration of reactive distillation and pressure-swing distillation technologies,a novel process for synthesis of dimethyl carbonate through transesterification with propylene carbonate and methanol has been developed by Huang et al.In this work,the optimization of this process was performed by minimizing the total TAC.The results show that the optimal design flowsheet can save energy consumption by 18.6% with the propylene carbonate conversion of 99.9%.Then,an effective plant-wide control structure for the process was developed.Dynamic simulation results demonstrate that the temperature/flow rate cascade control plus with simple temperature control can keep not only product purity but also the conversion of the reactant at their desired values in the face of the disturbance in reactant feed flow rate and feed composition.
基金Supported by the National Natural Science Foundation of China(61203020,21276126)Jiangsu Province Natural Science Foundation(BK2011795)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2011BAE18B01)
文摘The "neat" operation of the two-reactant reactive distillation column has Oetter steady-state economics, while It presents a challenge for design, optimization, and control of the process. Based on the optimal economic design, the dual-composition control structure and dual-temperature control structure are designed respectively for the benzene chlorine consecutive reactive distillation process. The effectiveness and robustness are analyzed comparably for the disturbance resistance in terms of changes of production rate and feed composition. Results show that dual-temperature control with propose selection of tray temperatures and the optimal profile of the set point can provide better transient process performance than the composition control structure.
基金supported financially by the Fundamental Research Funds for the Central Universities (Grant No.18CX02120A)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(Grant No. BS2014NJ010)the National Natural Science Foundation of China (Grant No. 21506255)
文摘In this paper, the novel control structures of differential pressure thermally coupled reactive distillation process for methyl acetate hydrolysis were proposed. The RadFrac module of Aspen Plus was adopted in the steady-state simulation. Sensitive analysis was applied to find the stable intial value and provide a basis for the improved control structure design. The Aspen Dynamics software was adopted to study the process dynamic behaviors, and two novel control structures provided with feed ratio controllers and sensitive tray temperature controllers were proposed. The reflux ratio controllers were applied in the improved novel control structures. Both control structures abandoned the composition controllers that were replaced by simpler controllers with which the product purity could meet the specification requiring under a ± 20% disturbance to the total feed flowrate / MeAc composition.
文摘Reactive distillation could be utilized to produce cyclohexanol through the cyclohexene hydration. By means of highly active zeolite catalyst HZSM-5, the kinetic-thermodynamic analysis of this reactive distillation has been carried out to get the characteristics of the reactive distillation. Results from kinetic and thermodynamic analysis indicate that the optimal pressure of this reactive distillation process should be set to higher pressure such as 0.3 or 0.4 MPa. To avoid the recovery of cyclohexanol at the top of the column, an unreactive section should be allocated at the upper column. In addition, the inert component benzene is more unfavorable to the reactive distillation process in comparison with the inert cyclohexane.
基金financial financial support from National Natural Science Foundation of China(218780112167601121808007)。
文摘Due to the topological structure of double columns and multiple separating sections in dividing-wall distillation columns(DWDCs),the development of vapor recompressed dividing-wall distillation columns(DWDC-VRHPs)represents a challenging issue with great complexities and tediousness.For the separations of light-component dominated and wide boiling-point ternary mixtures,because the purification of the light-component from the intermediate-and heavy-components incurs the primary energy dissipation,the application of vapor recompressed heat pumps(VRHP)should be aimed to reduce the irreversibility and this leads to the generation of the optimum topological structures of the DWDC-VRHPs,i.e.,a DWDC plus a two-stage VRHP.The first-stage VRHP is to preheat feed,not only taking the advantages of the small temperature elevation available but also favoring the mass transfer between the vapor and liquid phases through feed splitting.The second-stage VRHP is to reduce further separation irreversibility.The philosophy can be applied to any DWDCs no matter where the dividing wall locates.Two case studies on the separations of ternary mixtures of benzene,toluene,and o-xylene and n-pentane,n-hexane,and n-heptane demonstrate the economic optimality of the proposed DWDC-VRHPs and reveal the inherent interplay between internal and external process integration.