Photocatalytic degradations of p-nitrochlorbenzene (p-NCB) with distilled water wereinvestigated with ZnO crystals (catalyst) of 70nm in diameter under UV irradiation.The suitable experimental conditions are determine...Photocatalytic degradations of p-nitrochlorbenzene (p-NCB) with distilled water wereinvestigated with ZnO crystals (catalyst) of 70nm in diameter under UV irradiation.The suitable experimental conditions are determined as: ZnO 0.25g, pH 7, p-NCBconcentration 30mg/L. These variables in terms of the degradation rate have beendiscussed, which was defined as the rate of the initial degradation to the final degrada-tion of p-NCB. When all of the experimental degradation rate values are plotted as afunction of irradiation time, all of the points appeared on a single line for wide range ofp-NCB degradations. On the basis of these results, it has been concluded that at lowerZnO catalyst amount, much of the light is transmitted through the slurry in the con-tainer beaker, while at higher catalyst amount, all the incident photons are observedby the slurry. Degradation rates of p-NCB were found to decrease with increasingsolution pH. It has been concluded that the maximum degradation rate values of p-NCB under principally the same experimental conditions mentioned above are 97.4%,98.8% and 95.5% at 100min respectively. The results suggest that the photocatalyticdegradation is initiated by an oxidation of the p-NCB through ZnO surface-adsorbedhydroxyl radicals. Absorption spectra are recorded using spectrophotometer before andafter UV-irradiation in the wavelength range 200-400nm at room temperature. Itis found that the variation of irradiation time over the range 20-100min resulted inchange in the form of the spectrum linear absorption and a higher maximum valuewill be obtained at longer irradiation time.展开更多
Nano-ZnO particle was produced by evaporating zinc powders in air at air flow-rate from 0.2 to 0.6m3/h. Nano-ZnO particles was formed by the oxidation of the evaporated zinc vapor. X-ray diffraction shows the powders ...Nano-ZnO particle was produced by evaporating zinc powders in air at air flow-rate from 0.2 to 0.6m3/h. Nano-ZnO particles was formed by the oxidation of the evaporated zinc vapor. X-ray diffraction shows the powders to be ZnO with lattice parameters of a=0.3249nm and c=0.5205nm. The particle size is dependent upon the transit time from the source to the collection area. The size of particles was ranged between 81 to 103nm. The average density resulted was 4.865g/cm3. Normal ZnO and nano-ZnO were investigated to use them in aluminum metallurgy as an inert anode material. A certain amount of both oxides were molded subsequently inserted to the molten cryolite-aluminum oxide to investigate the corrosive behavior of both oxides. When the sintering temperature increased up to 1300℃, the weight loss ratio rose to 5.01%-7.33% and up to 7.67%-10.18% for nano-ZnO and normal ZnO, respectively. However, when the samples in the molten cryolite aluminum oxide were put for long time, the corrosive rate was found to be higher. It was found that the corrosive loss weight ratio of nano-ZnO anode was much lower than the normal one made from ordinary-ZnO providing that the nano-ZnO is more possible to be use inert anode material.展开更多
For safety reasons,in the automated dispensing medicines process,robots and humans cooperate to accomplish the task of drug sorting and distribution.In this dynamic unstructured environment,such as a humanrobot collab...For safety reasons,in the automated dispensing medicines process,robots and humans cooperate to accomplish the task of drug sorting and distribution.In this dynamic unstructured environment,such as a humanrobot collaboration scenario,the safety of human,robot,and equipment in the environment is paramount.In this work,a practical and effective robot motion planning method is proposed for dynamic unstructured environments.To figure out the problems of blind zones of single depth sensor and dynamic obstacle avoidance,we first propose a method for establishing offline mapping and online fusion of multi-sensor depth images and 3D grids of the robot workspace,which is used to determine the occupation states of the 3D grids occluded by robots and obstacles and to conduct real-time estimation of the minimum distance between the robot and obstacles.Then,based on the reactive control method,the attractive and repulsive forces are calculated and transformed into robot joint velocities to avoid obstacles in real time.Finally,the robot’s dynamic obstacle avoidance ability is evaluated on an experimental platform with a UR5 robot and two KinectV2 RGB-D sensors,and the effectiveness of the proposed method is verified.展开更多
Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds(VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparati...Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds(VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparative reactivity method(CRM) using proton transfer reaction mass spectrometer(PTR-MS).Compositions of 56 PAMS(photochemical assessment monitoring station) nonmethane hydrocarbons(NMHCs) were measured for both liquid and headspace of gasoline. We found high abundance of alkenes and aromatics in gasoline. The calculated OH reactivity derived from quantified NMHCs speciation accounted for only 57 ? 4% of total reactivity obtained from CRM method. N-Alkenes, only 6 wt% in liquid gasoline, contributed to 70% of calculated reactivity. We assume that the undetected branched alkenes are the possible reason for the missing reactivity. We suggest that the priority of gasoline quality improvement is to reduce alkenes content in gasoline in term of reactivity-based control.展开更多
文摘Photocatalytic degradations of p-nitrochlorbenzene (p-NCB) with distilled water wereinvestigated with ZnO crystals (catalyst) of 70nm in diameter under UV irradiation.The suitable experimental conditions are determined as: ZnO 0.25g, pH 7, p-NCBconcentration 30mg/L. These variables in terms of the degradation rate have beendiscussed, which was defined as the rate of the initial degradation to the final degrada-tion of p-NCB. When all of the experimental degradation rate values are plotted as afunction of irradiation time, all of the points appeared on a single line for wide range ofp-NCB degradations. On the basis of these results, it has been concluded that at lowerZnO catalyst amount, much of the light is transmitted through the slurry in the con-tainer beaker, while at higher catalyst amount, all the incident photons are observedby the slurry. Degradation rates of p-NCB were found to decrease with increasingsolution pH. It has been concluded that the maximum degradation rate values of p-NCB under principally the same experimental conditions mentioned above are 97.4%,98.8% and 95.5% at 100min respectively. The results suggest that the photocatalyticdegradation is initiated by an oxidation of the p-NCB through ZnO surface-adsorbedhydroxyl radicals. Absorption spectra are recorded using spectrophotometer before andafter UV-irradiation in the wavelength range 200-400nm at room temperature. Itis found that the variation of irradiation time over the range 20-100min resulted inchange in the form of the spectrum linear absorption and a higher maximum valuewill be obtained at longer irradiation time.
文摘Nano-ZnO particle was produced by evaporating zinc powders in air at air flow-rate from 0.2 to 0.6m3/h. Nano-ZnO particles was formed by the oxidation of the evaporated zinc vapor. X-ray diffraction shows the powders to be ZnO with lattice parameters of a=0.3249nm and c=0.5205nm. The particle size is dependent upon the transit time from the source to the collection area. The size of particles was ranged between 81 to 103nm. The average density resulted was 4.865g/cm3. Normal ZnO and nano-ZnO were investigated to use them in aluminum metallurgy as an inert anode material. A certain amount of both oxides were molded subsequently inserted to the molten cryolite-aluminum oxide to investigate the corrosive behavior of both oxides. When the sintering temperature increased up to 1300℃, the weight loss ratio rose to 5.01%-7.33% and up to 7.67%-10.18% for nano-ZnO and normal ZnO, respectively. However, when the samples in the molten cryolite aluminum oxide were put for long time, the corrosive rate was found to be higher. It was found that the corrosive loss weight ratio of nano-ZnO anode was much lower than the normal one made from ordinary-ZnO providing that the nano-ZnO is more possible to be use inert anode material.
基金the Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2019QNA25)。
文摘For safety reasons,in the automated dispensing medicines process,robots and humans cooperate to accomplish the task of drug sorting and distribution.In this dynamic unstructured environment,such as a humanrobot collaboration scenario,the safety of human,robot,and equipment in the environment is paramount.In this work,a practical and effective robot motion planning method is proposed for dynamic unstructured environments.To figure out the problems of blind zones of single depth sensor and dynamic obstacle avoidance,we first propose a method for establishing offline mapping and online fusion of multi-sensor depth images and 3D grids of the robot workspace,which is used to determine the occupation states of the 3D grids occluded by robots and obstacles and to conduct real-time estimation of the minimum distance between the robot and obstacles.Then,based on the reactive control method,the attractive and repulsive forces are calculated and transformed into robot joint velocities to avoid obstacles in real time.Finally,the robot’s dynamic obstacle avoidance ability is evaluated on an experimental platform with a UR5 robot and two KinectV2 RGB-D sensors,and the effectiveness of the proposed method is verified.
基金funded by the National Natural Science Foundation (Nos. 41125018, 41330635)
文摘Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds(VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparative reactivity method(CRM) using proton transfer reaction mass spectrometer(PTR-MS).Compositions of 56 PAMS(photochemical assessment monitoring station) nonmethane hydrocarbons(NMHCs) were measured for both liquid and headspace of gasoline. We found high abundance of alkenes and aromatics in gasoline. The calculated OH reactivity derived from quantified NMHCs speciation accounted for only 57 ? 4% of total reactivity obtained from CRM method. N-Alkenes, only 6 wt% in liquid gasoline, contributed to 70% of calculated reactivity. We assume that the undetected branched alkenes are the possible reason for the missing reactivity. We suggest that the priority of gasoline quality improvement is to reduce alkenes content in gasoline in term of reactivity-based control.