期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A Novel Dominant Allele from 93-11, ES(4), Represses Reactive Oxygen Species Scavenging and Leads to Early-Senescence in Rice
1
作者 Zhishu Jiang Cong Gan +5 位作者 Yulian Liu Xiaoli Lin Limei Peng Yongping Song Xiaowei Luo Jie Xu 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期665-677,共13页
Senescence is the last developmental process in plant,which has an important impact on crop yield and quality.In this study,a stable hereditary early-senescence line BC64 was isolated from the high-generation recombin... Senescence is the last developmental process in plant,which has an important impact on crop yield and quality.In this study,a stable hereditary early-senescence line BC64 was isolated from the high-generation recombinant inbred lines of 93-11 and Wuyunjing7(W7).Genetic analysis showed that the premature aging phenotype was controlled by a dominant gene derived from 93-11.By linkage analysis,the gene was primarily mapped in the region between marker B4 and B5 near the centromere of chromosome 4,described as ES(4).Through multiple backcrossing with W7,the near-isogenic line of ES(4)(NIL-ES(4))was obtained.Compared with wild-type W7,NIL-ES(4)plants showed more sever senescence phenotype in both nature and dark conditions.In NIL plants,leaves turned yellow at the fully tillering stage;photosynthetic rate,pollen fertility and seed setting rate were decreased.Moreover,the malondialdehyde,proline content and relative conductivity in NIL-ES(4)were significantly higher than those in W7;both transcript level and activities of reactive oxygen species scavenging enzymes were repressed;H2O2 and O^(2−)were significantly accumulated.This study provides a basis for further cloning and function identification of ES(4). 展开更多
关键词 RICE early-senescence gene mapping chlorophyll degradation reactive oxygen species scavenging
下载PDF
Reactive Oxygen Species Scavenging Enzymes and Down-Adjustment of Metabolism Level in Mitochondria Associated with Desiccation-Tolerance Acquisition of Maize Embryo 被引量:2
2
作者 Jing-Hua Wu Wei-Qing Wang +1 位作者 Song-Quan Song Hong-Yan Cheng 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第7期638-645,共8页
It is a well-known fact that a mature seed can survive losing most of its water, yet how seeds acquire desiccation- tolerance is not well understood. Through sampling maize embryos of different developmental stages an... It is a well-known fact that a mature seed can survive losing most of its water, yet how seeds acquire desiccation- tolerance is not well understood. Through sampling maize embryos of different developmental stages and comparatively studying the integrity, oxygen consumption rate and activities of antioxidant enzymes in the mitochondria, the main origin site of reactive oxygen species (ROS) production in seed cells, we found that before an embryo achieves desiccation-tolerance, its mitochondria shows a more active metabolism, and might produce more ROS and therefore need a more effective ROS scavenging system. However, embryo dehydration in this developmental stage declined the activities of most main antioxidant enzymes and accumulated thiobarbituric acid-reactive products in mitochondria, and then destroyed the structure and functional integrity of mitochondria. In physiologically-matured embryos (dehydration- tolerant), mitochondria showed lower metabolism levels, and no decline in ROS scavenging enzyme activities and less accumulation of thiobarbituric acid-reactive products after embryo dehydration. These data indicate that seed desiccation- tolerance acquisition might be associated with down-adjustment of the metabolism level in the late development stage, resulting in less ROS production, and ROS scavenging enzymes becoming desiccation-tolerant and then ensuring the structure and functional integrity of mitochondria. 展开更多
关键词 DESICCATION-TOLERANCE developing embryo MITOCHONDRIA reactive oxygen species scavenging enzymes
原文传递
Response to temperature stress of reactive oxygen species scavenging enzymes in the cross-tolerance of barley seed germination 被引量:8
3
作者 Yu-qin MEI Song-quan SONG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2010年第12期965-972,共8页
A number of studies have shown the existence of cross-tolerance in plants, but the physiological mechanism is poorly understood. In this study, we used the germination of barley seeds as a system to investigate the cr... A number of studies have shown the existence of cross-tolerance in plants, but the physiological mechanism is poorly understood. In this study, we used the germination of barley seeds as a system to investigate the cross-tolerance of low-temperature pretreatment to high-temperature stress and the possible involvement of reactive oxygen species (ROS) scavenging enzymes in the cross-tolerance. After pretreatment at 0 ℃ for different periods of time, barley seeds were germinated at 35 ℃, and the content of malondialdehyde (MDA) and the activities of ROS scavenging enzymes were measured by a spectrophotometer analysis. The results showed that barley seed germinated very poorly at 35 ℃, and this inhibitive effect could be overcome by pretreatment at 0 ℃. The MDA content varied, depending on the temperature at which seeds germinated, while barley seeds pretreated at 0 ℃ did not change the MDA content. Compared with seeds germinated directly at 35 ℃, the seeds pretreated first at 0 ℃ and then germinated at 35 ℃ had markedly increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR). The SOD and APX activities of seeds germinated at 35 ℃ after 0 ℃-pretreatment were even substantially higher than those at 25 ℃, and GR activity was similar to that at 25 ℃, at which the highest germination performance of barley seeds was achieved. These results indicate that low-temperature pretreatment can markedly increase the tolerance of barley seed to high temperature during germination, this being related to the increase in ROS scavenging enzyme activity. This may provide a new method for increasing seed germination under stress environments, and may be an excellent model system for the study of cross-tolerance. 展开更多
关键词 Barley seed CROSS-TOLERANCE Germination/growth reactive oxygen species (ROS) scavenging enzyme Pretreatment at low temperature Temperature stress
原文传递
TaNF-YB11,a gene of NF-Y transcription factor family in Triticum aestivum,confers drought tolerance on plants via modulating osmolyte accumulation and reactive oxygen species homeostasis 被引量:3
4
作者 ZHAO Ying-jia ZHANG Yan-yang +4 位作者 BAI Xin-yang LIN Rui-ze SHI Gui-qing DU Ping-ping XIAO Kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第11期3114-3130,共17页
Transcription factors(TFs)regulate diverse stress defensive-associated physiological processes and plant stress responses.We characterized TaNF-YB11,a gene of the NF-YB TF family in Triticum aestivum,in mediating plan... Transcription factors(TFs)regulate diverse stress defensive-associated physiological processes and plant stress responses.We characterized TaNF-YB11,a gene of the NF-YB TF family in Triticum aestivum,in mediating plant drought tolerance.TaNF-YB11 harbors the conserved domains specified by its NF-YB partners and targets the nucleus after the endoplasmic reticulum(ER)assortment.Yeast two-hybrid assay indicated the interactions of TaNF-YB11 with TaNF-YA2 and TaNF-YC3,two proteins encoded by genes in the NF-YA and NF-YC families,respectively.These results suggested that the heterotrimer established among them further regulated downstream genes at the transcriptional level.The transcripts of TaNF-YB11 were promoted in roots and leaves under a 27-h drought regime.Moreover,its upregulated expression levels under drought were gradually restored following a recovery treatment,suggesting its involvement in plant drought response.TaNF-YB11 conferred improved drought tolerance on plants;the lines overexpressing target gene displayed improved phenotype and biomass compared with wild type(WT)under drought treatments due to enhancement of stomata closing,osmolyte accumulation,and cellular reactive oxygen species(ROS)homeostasis.Knockdown expression of TaP5CS2,a P5CS family gene modulating proline biosynthesis that showed upregulated expression in drought-challenged TaNF-YB11 lines,alleviated proline accumulation of plants treated by drought.Likewise,TaSOD2 and TaCAT3,two genes encoding superoxide dismutase(SOD)and catalase(CAT)that were upregulated underlying TaNF-YB11 regulation,played critical roles in ROS homeostasis via regulating SOD and CAT activities.RNA-seq analysis revealed that numerous genes associated with processes of‘cellular processes',‘environmental information processing',‘genetic information processing',‘metabolism',and‘organismal systems'modified transcription under drought underlying control of TaNF-YB11.These results suggested that the TaNF-YB11-mediated drought response is possibly accomplished through the target gene in modifying gene transcription at the global level,which modulates complicated biological processes related to drought response.TaNF-YB11 is essential in plant drought adaptation and a valuable target for molecular breeding of drought-tolerant cultivars in T.aestivum. 展开更多
关键词 wheat(Triticum aestivum L.) NF-YB transcription factor drought stress osmolyte accumulation reactive oxygen species(ROS)scavenging
下载PDF
Diamond-Like Carbon Depositing on the Surface of Polylactide Membrane for Prevention of Adhesion Formation During Tendon Repair
5
作者 Yao Xiao Zaijin Tao +8 位作者 Yufeng Ju Xiaolu Huang Xinshu Zhang Xiaonan Liu Pavel A.Volotovski Chao Huang Hongqi Chen Yaozhong Zhang Shen Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期478-499,共22页
Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism ... Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine.This study proposes the use of diamond-like carbon(DLC)deposited on polylactic acid(PLA)membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats.The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane,with histological score decreasing from 3.12±0.27 to 2.20±0.22 and anti-adhesion effectiveness increasing from 21.61%to 44.72%.Mechanistically,the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively;thus,the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited.Consequently,excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-α(TNF-α)is largely reduced.For biocompatibility evaluation,PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes.Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds,which further delays the fibrosis process.It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion. 展开更多
关键词 Diamond-like carbon reactive oxygen species scavenging Foreign body reaction BIODEGRADATION ANTIOXIDANT Peritendinous adhesion
下载PDF
DFT Study on Molecular Structures and ROS Scavenging Mechanisms of Novel Antioxidants from Lespedeza Virgata
6
作者 李敏杰 张良苗 +1 位作者 刘卫霞 陆文聪 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第2期173-180,I0003,共9页
The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theo... The molecular structure and radical scavenging activity of three novel antioxidants from Lespedeza Virgata, lespedezavirgatol, lespedezavirgatal, and lespedezacoumestan, have been studied using density functional theory with the B3LYP and BhandHLYP methods. The optimized geometries of neutral, radical cation, radical and anion forms were obtained at the B3LYP/6-31G(d) level, in which it was found that all the most stable conformations contain intramolecular hydrogen bonds. The same results were obtained from the MP2 method. The homolytic O-H bond dissociation enthalpy and the adiabatic ionization potential of neutral and anion forms for the three new antioxidants and adiabatic electron affinity and H-atom affinity for hydroxyl radical, superoxide anion radical, and hydrogen peroxide radical were determined both in gas phase and in aqueous solution using IEF-PCM and CPCM model with UAHF or Bondi cavity. The antioxidant activities and reactive oxygen species scavenging mechanisms were then discussed, and the results obtained from different methods are consistent. Furthermore, the antioxidant activities are consistent with the experimental findings of the compounds under investigation. 展开更多
关键词 Molecular structure reactive oxygen species scavenging mechanism Novel antioxidant Density functional theory
下载PDF
Carrier-Free Deferoxamine Nanoparticles against Iron Overload in Brain
7
作者 Fang Zhu Jian Zhong +5 位作者 Junfei Hu Peng Yang Jianhua Zhang Minghua Zhang Yiwen Li Zhipeng Gu 《CCS Chemistry》 CAS CSCD 2023年第1期257-270,共14页
Although considerable progress has been achieved in treating iron-overload diseases with deferoxamine(DFO)-based biomaterials,high DFO loading and multifunctional integration in one system are still grand challenges.H... Although considerable progress has been achieved in treating iron-overload diseases with deferoxamine(DFO)-based biomaterials,high DFO loading and multifunctional integration in one system are still grand challenges.Herein,a series of carrier-free,high DFO-loading(∼80%),uniform spherical nanoparticles(NPs)assisted by polyphenols have been facilely developed with both efficient iron and reactive oxygen species-scavenging properties.Interestingly,those DFO-based NPs have demonstrated excellent scavenging performance in iron-overloaded cell model and energetically exhibited brain cell protection in vivo in intracerebral hemorrhage animal models.This study could provide a promising strategy to significantly improve the curative effect of DFO delivery systems for iron-overload diseases. 展开更多
关键词 carrier-free DEFEROXAMINE NANOPARTICLES iron scavenging reactive oxygen species scavenging
原文传递
Salt Tolerance in Soybean 被引量:50
8
作者 Tsui-Hung Phang Hon-Ming Lam 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2008年第10期1196-1212,共17页
Soybean is an important cash crop and its productivity is significantly hampered by salt stress. High salt imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces t... Soybean is an important cash crop and its productivity is significantly hampered by salt stress. High salt imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (i) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to describe its salt stress responses at the molecular level. 展开更多
关键词 abiotic stress Glycine max ion homeostasis osmotic adjustment reactive oxygen species scavenging salt tolerance soybean.
原文传递
Response of Chinese Wampee Axes and Maize Embryos to Dehydration at Different Rates 被引量:7
9
作者 Hui Huang Song-Quan Song Xian-Jin Wu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第1期67-74,共8页
Survival of wampee (Clausena lansium Skeels) axes and maize (Zea mays L.) embryos decreased with rapid and slow dehydration. Damage of wampee axes by rapid dehydration was much less than by slow dehydration, and t... Survival of wampee (Clausena lansium Skeels) axes and maize (Zea mays L.) embryos decreased with rapid and slow dehydration. Damage of wampee axes by rapid dehydration was much less than by slow dehydration, and that was contrary to maize embryos. The malondialdehyde contents of wampee axes and maize embryos rapidly increased with dehydration, those of wampee axes were lower during rapid dehydration than during slow dehydration, and those of maize embryos were higher during rapid dehydration than during slow dehydration. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) of wampee axes markedly increased during the early phase of dehydration, and then rapidly decreased, and those of rapidly dehydrated axes were higher than those of slow dehydrated axes when they were dehydrated to low water contents. Activities of SOD and APX of maize embryos notable decreased with dehydration. There were higher SOD activities and lower APX activities of slowly dehydrated maize embryos compared with rapidly dehydrated maize embryos. CAT activities of maize embryos markedly increased during the early phase of dehydration, and then decreased, and those of slowly dehydrated embryos were higher than those of rapidly dehydrated embryos during the late phase of dehydration. 展开更多
关键词 Clausena lansium axis desiccation-sensitivity DESICCATION-TOLERANCE MALONDIALDEHYDE orthodox seed reactive oxygen species scavenging enzyme recalcitrant seed Zea mays embryo.
原文传递
Natural product curcumin-based coordination nanoparticles for treating osteoarthritis via targeting Nrf2 and blocking NLRP3 inflammasome 被引量:3
10
作者 Zhiqiang Zhou Fei Gong +6 位作者 Peng Zhang Xiaotong Wang Rui Zhang Wei Xia Xiang Gao Xiaozhong Zhou Liang Cheng 《Nano Research》 SCIE EI CSCD 2022年第4期3338-3345,共8页
Oxidative stress leads to chondrocyte apoptosis and extracellular matrix(ECM)degradation,thus contributing to the pathogenesis of osteoarthritis(OA).Herein,curcumin with remarkable antioxidant and anti-inflammatory ac... Oxidative stress leads to chondrocyte apoptosis and extracellular matrix(ECM)degradation,thus contributing to the pathogenesis of osteoarthritis(OA).Herein,curcumin with remarkable antioxidant and anti-inflammatory activities has been employed as an organic ligand to coordinate ferric ions for enhancing the water-solubility and biocompatibility of natural product curcumin.The obtained iron-curcumin-based coordination nanoparticles(Fe-Cur NPs)exhibit great water-solubility and efficient reactive oxygen/nitrogen species(ROS/RNS)scavenging ability.In vitro chondrocyte evaluation experiments indicated that the intracellular ROS/RNS induced by interleukin 1β(IL-1β)could be efficiently scavenged by these Fe-Cur NPs and oxidative-stressinduced cell death could be preserved as well.In addition,post intra-articular(i.a.)injection into OA rat joints,Fe-Cur NPs could greatly inhibit OA progression via activating the nuclear factor-erythroid 2 related factor-2(Nrf2)and inhibiting nod-like receptor protein-3(NLRP3)inflammasome activation in primary rat chondrocytes,as well as decrease the production of matrix degrading proteases and other inflammatory mediators.The efficient antioxidation and anti-inflammation performance of Fe-Cur NPs endow them as a promising nanoplatform for treatment of various inflammatory diseases,and more detailed researches will be conducted in the future. 展开更多
关键词 iron-curcumin-based coordination nanoparticles(Fe-Cur NPs) reactive oxygen/nitrogen species(ROS/RNS)scavenging ability OSTEOARTHRITIS antioxidation and anti-inflammation performance signaling pathway
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部