The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p...The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.展开更多
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl...The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.展开更多
Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is...Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulatio...Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulation capability of the system itself.We propose a dynamic reactive power planning method suitable for CSP-PV hybrid power generation system.The method determines the installation node of the dynamic reactive power compensation device and its compensation capacity based on the reactive power adjustment capability of the system itself.The critical fault node is determined by the transient voltage stability recovery index,and the weak node of the system is initially determined.Based on this,the sensitivity index is used to determine the installation node of the dynamic reactive power compensation device.Dynamic reactive power planning optimization model is established with the lowest investment cost of dynamic reactive power compensation device and the improvement of system transient voltage stability.Furthermore,the component of the reactive power compensation node is optimized by particle swarm optimization based on differential evolution(DE-PSO).The simulation results of the example system show that compared with the dynamic position compensation device installation location optimization method,the proposed method can improve the transient voltage stability of the system under the same reactive power compensation cost.展开更多
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To impr...Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To improve the quality of the solution and reduce the inference time burden,this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs(topology and power loads)and reactive power scheduling schemes of distribution networks,from a data-driven perspective.The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix,a customized loss function,and the use of max-pooling layers.Additionally,a rulebased strategy is proposed to adjust infeasible solutions that violate constraints.Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions.Moreover,its online inference time is significantly faster than traditional physical model based methods,particularly for large-scale distribution networks.展开更多
The construction of advanced metering infrastructure and the rapid evolution of artificial intelligence bring opportunities to quickly searching for the optimal dispatching strategy for reactive power optimization. Th...The construction of advanced metering infrastructure and the rapid evolution of artificial intelligence bring opportunities to quickly searching for the optimal dispatching strategy for reactive power optimization. This can be realized by mining existing prior knowledge and massive data without explicitly constructing physical models. Therefore, a novel datadriven approach is proposed for reactive power optimization of distribution networks using capsule networks(CapsNet). The convolutional layers with strong feature extraction ability are used to project the power loads to the feature space to realize the automatic extraction of key features. Furthermore, the complex relationship between input features and dispatching strategies is captured accurately by capsule layers. The back propagation algorithm is utilized to complete the training process of the CapsNet. Case studies show that the accuracy and robustness of the CapsNet are better than those of popular baselines(e.g.,convolutional neural network, multi-layer perceptron, and casebased reasoning). Besides, the computing time is much lower than that of traditional heuristic methods such as genetic algorithm, which can meet the real-time demand of reactive power optimization in distribution networks.展开更多
Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and s...Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and switching operation constraints, DRPO is formulated as a nonlinear constrained two-objective optimization problem in this paper. The first objective is to minimize the real power loss and the Total Voltage Deviations(TVDs), and the second objective is to minimize incremental system loss. Then a Filter Collaborative State Transition Algorithm(FCSTA) is presented for solving DRPO problems. Two populations corresponding to two different objectives are employed. Moreover, the filter technique is utilized to deal with constraints. Finally, the effectiveness of the proposed method is demonstrated through the results obtained for a 24-hour test on Ward & Hale 6 bus, IEEE 14 bus, and IEEE 30 bus test power systems. To substantiate the effectiveness of the proposed algorithms, the obtained results are compared with different approaches in the literature.展开更多
In view of the reactive power coordination difficulties caused by reactive power strong coupling,the provincial power grids in the interconnected system are formed by the multi-AC/DC transmission.Wind power channels a...In view of the reactive power coordination difficulties caused by reactive power strong coupling,the provincial power grids in the interconnected system are formed by the multi-AC/DC transmission.Wind power channels are under the conditions of large-scale long-distance transmission of wind power and other forms of renewable power generation.The AC-DC hybrid power flow equation of the interconnected system,including the AC-DC tie lines,is presented in this paper,along with the robust dynamic evolutionary optimization of the reactive power system in interconnected systems under fluctuating and uncertain wind power conditions.Therefore,the rapid collaborative optimization of reactive power flow and the exchange of reactive power between tie lines between provincial power grids are realized.The analysis was made by taking four interconnected large-scale provincial power grids of Eastern Mongolia,Jilin,Liaoning and Shandong as an example.The simulation results demonstrate the effectiveness and superiority of the proposed reactive power dynamic multi-objective optimization method for interconnected power grids.展开更多
As high amounts of new energy and electric vehicle(EV)charging stations are connected to the distribution network,the voltage deviations are likely to occur,which will further affect the power quality.It is challengin...As high amounts of new energy and electric vehicle(EV)charging stations are connected to the distribution network,the voltage deviations are likely to occur,which will further affect the power quality.It is challenging to manage high quality voltage control of a distribution network only relying on the traditional reactive power control mode.If the reactive power regulation potentials of new energy and EVs can be tapped,it will greatly reduce the reactive power optimization pressure on the network.Keeping this in mind,our reasearch first adds EVs to the traditional distribution network model with new forms of energy,and then a multi-objective optimization model,with achieving the lowest line loss,voltage deviation,and the highest static voltage stability margin as its objectives,is constructed.Meanwihile,the corresponding model parameters are set under different climate and equipment conditions.Ultimately,the optimization model under specific scenarios is obtained.Furthermore,considering the supply and demand relation-ship of the network,an improved technique for order preference by similarity to an ideal solution decision method is proposed,which aims to judge the adaptability of different algorithms to the optimized model,so as to select a most suitable algorithm for the problem.Finally,a comparison is made between the constructed model and a model without new energy.The results reveal that the constructed model can provide a high quality reactive power regula-tion strategy.展开更多
A hierarchically correlated equilibrium Q-learning(HCEQ)algorithm for reactive power optimization that considers carbon emission on the grid-side as an optimization objective,is proposed here.Based on the multi-area d...A hierarchically correlated equilibrium Q-learning(HCEQ)algorithm for reactive power optimization that considers carbon emission on the grid-side as an optimization objective,is proposed here.Based on the multi-area decentralized collaborative framework,the controllable variables in each region are divided into several optimization layers,which is an effective method for solving the limitations posed by dimensionality.The HCEQ provides constant information on the interaction between the state-action value function matrices,as well as on the cooperative game equilibrium among agents in each region.After acquiring the optimal value function matrix in the pre-learning process,HCEQ is able to quickly achieve an optimal solution online.Simulation of the IEEE 57-bus system is performed,which demonstrates that the proposed algorithm can effectively solve multi-area decentralized collaborative reactive power optimization,with the desired global search capabilities and convergence speed.展开更多
The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irration...The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irrational regulations of reactive power compensation equipment have become the prominent problems of the regions where large-scale wind power integrated.In view of these problems,this paper proposed an optimal reactive power dispatch(ORPD)strategy of wind power plants cluster(WPPC)considering static voltage stability for lowcarbon power system.The control model of the ORPD strategy was built according to the wind power prediction,the present operation information and the historical operation information.By utilizing the automatic voltage control capability of wind power plants and central substations,the ORPD strategy can achieve differentiated management between the discrete devices and the dynamic devices of the WPPC.Simulation results of an actual WPPC in North China show that the ORPD strategy can improve the voltage control performance of the pilot nodes and coordinate the operation between discrete devices and the dynamic devices,thus maintaining the static voltage stability as well.展开更多
The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To ...The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To address the influence of high penetration of RES integrated into active distribution networks,a distributionally robust chance constraint(DRCC)-based ORPD model considering discrete reactive power compensators is proposed in this paper.The proposed ORPD model combines a second-order cone programming(SOCP)-based model at the nominal operation mode and a linear power flow(LPF)model to reflect the system response under certainties.Then,a distributionally robust optimization(WDRO)method with Wasserstein distance is utilized to solve the proposed DRCC-based ORPD model.The WDRO method is data-driven due to the reason that the ambiguity set is constructed by the available historical data without any assumption on the specific probability distribution of the uncertainties.And the more data is available,the smaller the ambiguity would be.Numerical results on IEEE 30-bus and 123-bus systems and comparisons with the other three-benchmark approaches demonstrate the accuracy and effectiveness of the proposed model and method.展开更多
In the existing multi-period robust optimization methods for the optimal power flow in radial distribution systems,the capability of distributed generators(DGs)to regulate the reactive power,the operation costs of the...In the existing multi-period robust optimization methods for the optimal power flow in radial distribution systems,the capability of distributed generators(DGs)to regulate the reactive power,the operation costs of the regulation equipment,and the current of the shunt capacitor of the cables are not considered.In this paper,a multi-period two-stage robust scheduling strategy that aims to minimize the total cost of the power supply is developed.This strategy considers the time-ofuse price,the capability of the DGs to regulate the active and reactive power,the action costs of the regulation equipment,and the current of the shunt capacitors of the cables in a radial distribution system.Furthermore,the numbers of variables and constraints in the first-stage model remain constant during the iteration to enhance the computation efficiency.To solve the second-stage model,only the model of each period needs to be solved.Then,their objective values are accumulated,revealing that the computation rate using the proposed method is much higher than that of existing methods.The effectiveness of the proposed method is validated by actual 4-bus,IEEE 33-bus,and PG 69-bus distribution systems.展开更多
The increasing penetration level of photovoltaic(PV)power generation in low voltage(LV)networks results in voltage rise issues,particularly at the end of the feeders.In order to mitigate this problem,several strategie...The increasing penetration level of photovoltaic(PV)power generation in low voltage(LV)networks results in voltage rise issues,particularly at the end of the feeders.In order to mitigate this problem,several strategies,such as grid reinforcement,transformer tap change,demand-side management,active power curtailment,and reactive power optimization methods,show their contribution to voltage support,yet still limited.This paper proposes a coordinated volt-var control architecture between the LV distribution transformer and solar inverters to optimize the PV power penetration level in a representative LV network in Bornholm Island using a multi-objective genetic algorithm.The approach is to increase the reactive power contribution of the inverters closest to the transformer during overvoltage conditions.Two standard reactive power control concepts,cosu(P)and Q(U),are simulated and compared in terms of network power losses and voltage level along the feeder.As a practical implementation,a reconfigurable hardware is used for developing a testing platform based on real-time measurements to regulate the reactive power level.The proposed testing platform has been developed within PVNET.dk project,which targets to study the approaches for large PV power integration into the network,without the need of reinforcement.展开更多
基金This work was supported by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China(J2022114,Risk Assessment and Coordinated Operation of Coastal Wind Power Multi-Point Pooling Access System under Extreme Weather).
文摘The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.
基金Sponsored by the Scientific and Technological Project of Heilongjiang Province(Grant No.GD07A304)
文摘The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems.
文摘Due to the inherent complexity, traditional ant colony optimization (ACO) algorithm is inadequate and insufficient to the reactive power optimization for distribution network. Therefore, firstly the ACO algorithm is improved in two aspects: pheromone mutation and re-initialization strategy. Then the thought of differential evolution (DE) algorithm is proposed to be merged into ACO, and by producing new individuals with random deviation disturbance of DE, pheromone quantity left by ants is disturbed appropriately, to search the optimal path, by which the ability of search having been improved. The proposed algorithm is tested on IEEE30-hus system and actual distribution network, and the reactive power optimization results are calculated to verify the feasibility and effectiveness of the improved algorithm.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
基金Science and Technology Projects of State Grid Corporation of China(No.SGGSKY00FJJS1800140)。
文摘Aiming at the faults of some weak nodes in the concentrated solar power-photovoltaic(CSP-PV)hybrid power generation system,it is impossible to restore the transient voltage only relying on the reactive power regulation capability of the system itself.We propose a dynamic reactive power planning method suitable for CSP-PV hybrid power generation system.The method determines the installation node of the dynamic reactive power compensation device and its compensation capacity based on the reactive power adjustment capability of the system itself.The critical fault node is determined by the transient voltage stability recovery index,and the weak node of the system is initially determined.Based on this,the sensitivity index is used to determine the installation node of the dynamic reactive power compensation device.Dynamic reactive power planning optimization model is established with the lowest investment cost of dynamic reactive power compensation device and the improvement of system transient voltage stability.Furthermore,the component of the reactive power compensation node is optimized by particle swarm optimization based on differential evolution(DE-PSO).The simulation results of the example system show that compared with the dynamic position compensation device installation location optimization method,the proposed method can improve the transient voltage stability of the system under the same reactive power compensation cost.
文摘Reactive power optimization of distribution networks is traditionally addressed by physical model based methods,which often lead to locally optimal solutions and require heavy online inference time consumption.To improve the quality of the solution and reduce the inference time burden,this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs(topology and power loads)and reactive power scheduling schemes of distribution networks,from a data-driven perspective.The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix,a customized loss function,and the use of max-pooling layers.Additionally,a rulebased strategy is proposed to adjust infeasible solutions that violate constraints.Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions.Moreover,its online inference time is significantly faster than traditional physical model based methods,particularly for large-scale distribution networks.
文摘The construction of advanced metering infrastructure and the rapid evolution of artificial intelligence bring opportunities to quickly searching for the optimal dispatching strategy for reactive power optimization. This can be realized by mining existing prior knowledge and massive data without explicitly constructing physical models. Therefore, a novel datadriven approach is proposed for reactive power optimization of distribution networks using capsule networks(CapsNet). The convolutional layers with strong feature extraction ability are used to project the power loads to the feature space to realize the automatic extraction of key features. Furthermore, the complex relationship between input features and dispatching strategies is captured accurately by capsule layers. The back propagation algorithm is utilized to complete the training process of the CapsNet. Case studies show that the accuracy and robustness of the CapsNet are better than those of popular baselines(e.g.,convolutional neural network, multi-layer perceptron, and casebased reasoning). Besides, the computing time is much lower than that of traditional heuristic methods such as genetic algorithm, which can meet the real-time demand of reactive power optimization in distribution networks.
基金supported by the National Natural Science Foundation of China(Nos.51767022 and 51575469)
文摘Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and switching operation constraints, DRPO is formulated as a nonlinear constrained two-objective optimization problem in this paper. The first objective is to minimize the real power loss and the Total Voltage Deviations(TVDs), and the second objective is to minimize incremental system loss. Then a Filter Collaborative State Transition Algorithm(FCSTA) is presented for solving DRPO problems. Two populations corresponding to two different objectives are employed. Moreover, the filter technique is utilized to deal with constraints. Finally, the effectiveness of the proposed method is demonstrated through the results obtained for a 24-hour test on Ward & Hale 6 bus, IEEE 14 bus, and IEEE 30 bus test power systems. To substantiate the effectiveness of the proposed algorithms, the obtained results are compared with different approaches in the literature.
基金This work was supported by the National Key Research and Development Program of China under Grant No.2017YFB0902100.
文摘In view of the reactive power coordination difficulties caused by reactive power strong coupling,the provincial power grids in the interconnected system are formed by the multi-AC/DC transmission.Wind power channels are under the conditions of large-scale long-distance transmission of wind power and other forms of renewable power generation.The AC-DC hybrid power flow equation of the interconnected system,including the AC-DC tie lines,is presented in this paper,along with the robust dynamic evolutionary optimization of the reactive power system in interconnected systems under fluctuating and uncertain wind power conditions.Therefore,the rapid collaborative optimization of reactive power flow and the exchange of reactive power between tie lines between provincial power grids are realized.The analysis was made by taking four interconnected large-scale provincial power grids of Eastern Mongolia,Jilin,Liaoning and Shandong as an example.The simulation results demonstrate the effectiveness and superiority of the proposed reactive power dynamic multi-objective optimization method for interconnected power grids.
基金supported by National Key R&D Program of China (2021ZD0111502)National Natural Science Foundation of China (51907112,U2066212)+1 种基金Natural Science Foundation of Guangdong Province of China (2019A1515011671,2021A1515011709)Scientific Research Staring Foundation of Shantou University (NTF19028,NTF20009).
文摘As high amounts of new energy and electric vehicle(EV)charging stations are connected to the distribution network,the voltage deviations are likely to occur,which will further affect the power quality.It is challenging to manage high quality voltage control of a distribution network only relying on the traditional reactive power control mode.If the reactive power regulation potentials of new energy and EVs can be tapped,it will greatly reduce the reactive power optimization pressure on the network.Keeping this in mind,our reasearch first adds EVs to the traditional distribution network model with new forms of energy,and then a multi-objective optimization model,with achieving the lowest line loss,voltage deviation,and the highest static voltage stability margin as its objectives,is constructed.Meanwihile,the corresponding model parameters are set under different climate and equipment conditions.Ultimately,the optimization model under specific scenarios is obtained.Furthermore,considering the supply and demand relation-ship of the network,an improved technique for order preference by similarity to an ideal solution decision method is proposed,which aims to judge the adaptability of different algorithms to the optimized model,so as to select a most suitable algorithm for the problem.Finally,a comparison is made between the constructed model and a model without new energy.The results reveal that the constructed model can provide a high quality reactive power regula-tion strategy.
基金supported in part by National Key Basic Research Program of China(973 Program:2013CB228205)National Natural Science Foundation of China(51177051,51477055).
文摘A hierarchically correlated equilibrium Q-learning(HCEQ)algorithm for reactive power optimization that considers carbon emission on the grid-side as an optimization objective,is proposed here.Based on the multi-area decentralized collaborative framework,the controllable variables in each region are divided into several optimization layers,which is an effective method for solving the limitations posed by dimensionality.The HCEQ provides constant information on the interaction between the state-action value function matrices,as well as on the cooperative game equilibrium among agents in each region.After acquiring the optimal value function matrix in the pre-learning process,HCEQ is able to quickly achieve an optimal solution online.Simulation of the IEEE 57-bus system is performed,which demonstrates that the proposed algorithm can effectively solve multi-area decentralized collaborative reactive power optimization,with the desired global search capabilities and convergence speed.
基金This work was supported by the National Natural Science Foundation of China(No.51207145)the Science and Technology Project of State Grid Corporation of China(No.NY71-14-035).
文摘The implementation of developing the wind power is an important way to achieve the low-carbon power system.However,the voltage stability issues caused by the random fluctuations of active power output and the irrational regulations of reactive power compensation equipment have become the prominent problems of the regions where large-scale wind power integrated.In view of these problems,this paper proposed an optimal reactive power dispatch(ORPD)strategy of wind power plants cluster(WPPC)considering static voltage stability for lowcarbon power system.The control model of the ORPD strategy was built according to the wind power prediction,the present operation information and the historical operation information.By utilizing the automatic voltage control capability of wind power plants and central substations,the ORPD strategy can achieve differentiated management between the discrete devices and the dynamic devices of the WPPC.Simulation results of an actual WPPC in North China show that the ORPD strategy can improve the voltage control performance of the pilot nodes and coordinate the operation between discrete devices and the dynamic devices,thus maintaining the static voltage stability as well.
基金supported in part by National Key Research and Development Program of China(No.2018YFB0905000)in part by Key Research and Development Program of Shaanxi(No.2017ZDCXL-GY-02-03)。
文摘The uncertainties from renewable energy sources(RESs)will not only introduce significant influences to active power dispatch,but also bring great challenges to the analysis of optimal reactive power dispatch(ORPD).To address the influence of high penetration of RES integrated into active distribution networks,a distributionally robust chance constraint(DRCC)-based ORPD model considering discrete reactive power compensators is proposed in this paper.The proposed ORPD model combines a second-order cone programming(SOCP)-based model at the nominal operation mode and a linear power flow(LPF)model to reflect the system response under certainties.Then,a distributionally robust optimization(WDRO)method with Wasserstein distance is utilized to solve the proposed DRCC-based ORPD model.The WDRO method is data-driven due to the reason that the ambiguity set is constructed by the available historical data without any assumption on the specific probability distribution of the uncertainties.And the more data is available,the smaller the ambiguity would be.Numerical results on IEEE 30-bus and 123-bus systems and comparisons with the other three-benchmark approaches demonstrate the accuracy and effectiveness of the proposed model and method.
基金supported in part by the Fundamental Research Funds for the Central Universities of China(No.PA2021GDSK0083)in part by the State Key Program of National Natural Science of China(No.51637004)in part by the National Key Research and Development Plan“Important Scientific Instruments and Equipment Development”(No.2016YFF0102200)。
文摘In the existing multi-period robust optimization methods for the optimal power flow in radial distribution systems,the capability of distributed generators(DGs)to regulate the reactive power,the operation costs of the regulation equipment,and the current of the shunt capacitor of the cables are not considered.In this paper,a multi-period two-stage robust scheduling strategy that aims to minimize the total cost of the power supply is developed.This strategy considers the time-ofuse price,the capability of the DGs to regulate the active and reactive power,the action costs of the regulation equipment,and the current of the shunt capacitors of the cables in a radial distribution system.Furthermore,the numbers of variables and constraints in the first-stage model remain constant during the iteration to enhance the computation efficiency.To solve the second-stage model,only the model of each period needs to be solved.Then,their objective values are accumulated,revealing that the computation rate using the proposed method is much higher than that of existing methods.The effectiveness of the proposed method is validated by actual 4-bus,IEEE 33-bus,and PG 69-bus distribution systems.
基金This work was supported in part by PVNET.dk project sponsored by Energinet.dk under the Electrical Energy Research Program(ForskEL,grant number 10698).
文摘The increasing penetration level of photovoltaic(PV)power generation in low voltage(LV)networks results in voltage rise issues,particularly at the end of the feeders.In order to mitigate this problem,several strategies,such as grid reinforcement,transformer tap change,demand-side management,active power curtailment,and reactive power optimization methods,show their contribution to voltage support,yet still limited.This paper proposes a coordinated volt-var control architecture between the LV distribution transformer and solar inverters to optimize the PV power penetration level in a representative LV network in Bornholm Island using a multi-objective genetic algorithm.The approach is to increase the reactive power contribution of the inverters closest to the transformer during overvoltage conditions.Two standard reactive power control concepts,cosu(P)and Q(U),are simulated and compared in terms of network power losses and voltage level along the feeder.As a practical implementation,a reconfigurable hardware is used for developing a testing platform based on real-time measurements to regulate the reactive power level.The proposed testing platform has been developed within PVNET.dk project,which targets to study the approaches for large PV power integration into the network,without the need of reinforcement.