Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with...Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with X-ray diffractometer, scanning electron microscope and electrochemical analyzer. The volume expansion ratio, open porosity and corrosion resistance in 3.5%(mass fraction) Na Cl aqueous solution of the alloys increase at first and then decrease with the increase of Mg content. The maxima of volume expansion ratio and open porosity are 18.3% and 28.1% for the porous Al-56%Mg(mass fraction) alloy, while there is the best corrosion resistance for the porous Al-37.5% Mg(mass fraction) alloy. The pore formation mechanism can be explained by Kirkendall effect, and the corrosion resistance can be mainly affected by the phase composition for the porous Al-Mg alloys. They would be of the potential application for filtration in the chloride environment.展开更多
Porous Fe-Sialloys with different nominalcompositions ranging from Fe-10wt% Sito Fe-50wt% Siwere fabricated through a reactive synthesis of Fe and Sielementalpowder mixtures.The effects of Sicontents on the pore struc...Porous Fe-Sialloys with different nominalcompositions ranging from Fe-10wt% Sito Fe-50wt% Siwere fabricated through a reactive synthesis of Fe and Sielementalpowder mixtures.The effects of Sicontents on the pore structure of porous Fe-Sialloy were investigated in detail.The results showed that the open porosity,gas permeability and maximum pore size of the porous Fe-Sialloys increased with increasing Sicontents,indicating that the porosity and pore size can be tailored by changing the Sicontents.The pore structure parameter including the open porosity,gas permeability,maximum pore size obeyed the HagenPoiseuille formula with the constant G=0.035 m^(-1_Pa^(-1)s^(-1) for the reactively synthesized porous Fe-Sialloys.The mechanicalproperty of the porous Fe-Sialloys showed applicability in the filtration industries.展开更多
基金Project(IRT_14R48)supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of ChinaProjects(51271158,51272158,51401175,51504213)supported by the National Natural Science Foundation of China+2 种基金Project([2009]17)supported by the Changjiang Scholar Incentive Program,ChinaProject(CX2015B224)supported by the Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2015WK3021)supported by the Hunan Provincial Key Research Program,China
文摘Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with X-ray diffractometer, scanning electron microscope and electrochemical analyzer. The volume expansion ratio, open porosity and corrosion resistance in 3.5%(mass fraction) Na Cl aqueous solution of the alloys increase at first and then decrease with the increase of Mg content. The maxima of volume expansion ratio and open porosity are 18.3% and 28.1% for the porous Al-56%Mg(mass fraction) alloy, while there is the best corrosion resistance for the porous Al-37.5% Mg(mass fraction) alloy. The pore formation mechanism can be explained by Kirkendall effect, and the corrosion resistance can be mainly affected by the phase composition for the porous Al-Mg alloys. They would be of the potential application for filtration in the chloride environment.
基金Funded by the National Natural Science Foundation of China(51071178)the Natural Science Foundation of Hunan Province,China(12JJ4044)the State Science and Technology Support Program(2012BAC02B05)
文摘Porous Fe-Sialloys with different nominalcompositions ranging from Fe-10wt% Sito Fe-50wt% Siwere fabricated through a reactive synthesis of Fe and Sielementalpowder mixtures.The effects of Sicontents on the pore structure of porous Fe-Sialloy were investigated in detail.The results showed that the open porosity,gas permeability and maximum pore size of the porous Fe-Sialloys increased with increasing Sicontents,indicating that the porosity and pore size can be tailored by changing the Sicontents.The pore structure parameter including the open porosity,gas permeability,maximum pore size obeyed the HagenPoiseuille formula with the constant G=0.035 m^(-1_Pa^(-1)s^(-1) for the reactively synthesized porous Fe-Sialloys.The mechanicalproperty of the porous Fe-Sialloys showed applicability in the filtration industries.