电压控制型逆变器VCI(voltage-controlled inverters)在弱电网下表现出更强的稳定性,有望在可再生能源发电中得到更广泛的应用。然而,VCI的有功功率控制带宽通常低于电流控制并网逆变器CCI(current-controlled inverter)。随着电网阻抗...电压控制型逆变器VCI(voltage-controlled inverters)在弱电网下表现出更强的稳定性,有望在可再生能源发电中得到更广泛的应用。然而,VCI的有功功率控制带宽通常低于电流控制并网逆变器CCI(current-controlled inverter)。随着电网阻抗增大和电网强度进一步降低,其调节时间甚至将长达数秒,难以满足可再生能源发电最大功率点跟踪MPPT(maximum power point tracking)的要求。此外,现有的以功率环改造为特点的VCI有功功率快速控制方法,则可能导致弱电网下VCI稳定性损失。针对这一问题,建立了VCI并网系统的详细输入-输出模型,揭示了弱电网下VCI功率环改造法面临稳定性和快速性矛盾的根源,并提出了一种基于外环改造和功率指令前置滤波的VCI有功功率快速控制方法,能够有效提升VCI有功功率控制带宽,且不影响其弱电网下的稳定性,进一步实现了基于VCI的MPPT控制;针对短路容量比和电网阻抗大幅波动对所提控制的影响,又提出了一种基于电网阻抗在线辨识的VCI有功功率快速控制自适应方法。最后,实验结果验证了所提方法的有效性。展开更多
较为全面地综述了国内外学术界对电力系统无功电压调控配合的研究现状。归纳并定义了无功电压调控的平衡状态,提出无功电压调控失配与适配的概念,建立电力系统无功均衡适配调度模型(equilibrium and coordinated reactivepower dispatch...较为全面地综述了国内外学术界对电力系统无功电压调控配合的研究现状。归纳并定义了无功电压调控的平衡状态,提出无功电压调控失配与适配的概念,建立电力系统无功均衡适配调度模型(equilibrium and coordinated reactivepower dispatch,ECRPD),指出了现行无功电压调控配合研究的关键问题与难点。提出采用多智能体系统等分布式人工智能方法与博弈论相结合,用以分析和解决ECRPD问题。展开更多
文摘电压控制型逆变器VCI(voltage-controlled inverters)在弱电网下表现出更强的稳定性,有望在可再生能源发电中得到更广泛的应用。然而,VCI的有功功率控制带宽通常低于电流控制并网逆变器CCI(current-controlled inverter)。随着电网阻抗增大和电网强度进一步降低,其调节时间甚至将长达数秒,难以满足可再生能源发电最大功率点跟踪MPPT(maximum power point tracking)的要求。此外,现有的以功率环改造为特点的VCI有功功率快速控制方法,则可能导致弱电网下VCI稳定性损失。针对这一问题,建立了VCI并网系统的详细输入-输出模型,揭示了弱电网下VCI功率环改造法面临稳定性和快速性矛盾的根源,并提出了一种基于外环改造和功率指令前置滤波的VCI有功功率快速控制方法,能够有效提升VCI有功功率控制带宽,且不影响其弱电网下的稳定性,进一步实现了基于VCI的MPPT控制;针对短路容量比和电网阻抗大幅波动对所提控制的影响,又提出了一种基于电网阻抗在线辨识的VCI有功功率快速控制自适应方法。最后,实验结果验证了所提方法的有效性。
文摘较为全面地综述了国内外学术界对电力系统无功电压调控配合的研究现状。归纳并定义了无功电压调控的平衡状态,提出无功电压调控失配与适配的概念,建立电力系统无功均衡适配调度模型(equilibrium and coordinated reactivepower dispatch,ECRPD),指出了现行无功电压调控配合研究的关键问题与难点。提出采用多智能体系统等分布式人工智能方法与博弈论相结合,用以分析和解决ECRPD问题。