Based on the method of compound and additional conditions under the conditions of the equal temperature rise and the equal potential drop (P.D.) of resistance, the application of design software of dry-type air-core r...Based on the method of compound and additional conditions under the conditions of the equal temperature rise and the equal potential drop (P.D.) of resistance, the application of design software of dry-type air-core reactor is introduced in this thesis. The analytical methods of the inductance are also given. This approach is proved entirely feasible in theory through the simplification with Bartky transformation, and is able to quickly and accurately calculate reactor inductance. This paper presents the analytical methods of the loss of dry-type air-core reactor as well.展开更多
In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of fluidized bed and strengthen the drying performance of oil shale particles, is ...In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of fluidized bed and strengthen the drying performance of oil shale particles, is creatively designed in this study. The rotating speed of the asynchronous rotating air distributor with an embedded center disk and an encircling disk is regulated to achieve the different air supply conditions. The impacts of different drying conditions on the drying characteristic of Wangqing oil shale particles are studied with the help of electronic scales. The dynamics of experimental data is analyzed with 9 common drying models. The results indicate that the particles distribution in fluidized bed can be improved and the drying time can be reduced by decreasing the rotating speed of the embedded center disk and increasing the rotating speed of the encircling disk. The drying process of oil shale particles involves a rising drying rate period, a constant drying rate period and a falling drying rate period. Regulating the air distributor rotating speed reasonably will accelerate the shift of particles from the rising drying rate period to the falling drying rate period directly. The two-term model fits properly the oil shale particles drying simulation among 9 drying models at different air supply conditions. Yet the air absorbed in the particles' pores is diffused along with the moisture evaporation, and a small amount of moisture remains on the wall of fluidized bed in each experiment, thus, the values of drying simulation are less than the experimental values.展开更多
The traditional ventilation mode of subway vehicles adopts the form that the inlets and outlets are placed on the upper part of the cabin.The air distribution formed in this mode often cause serious problems of therma...The traditional ventilation mode of subway vehicles adopts the form that the inlets and outlets are placed on the upper part of the cabin.The air distribution formed in this mode often cause serious problems of thermal comfort and energy consumption.In order to solve these problems caused by the traditional ventilation mode,a new hybrid ventilation mode was proposed.The hybrid ventilation mode uses both upper and underside air supply inlets.A method for evaluating the air distribution performance of subway air conditioning was developed.The method applies non-uniformity coefficients,maximum temperature difference,air diffusion performance index,modified energy utilization coefficient and Air short-circuit comprehensive coefficient.Air short-circuit comprehensive coefficient was a new index to evaluate the degree of air short-circuit of supply air.Based on the airflow simulation,the air distribution performance for the hybrid ventilation mode was evaluated using these indexes,and compared with the traditional ventilation mode.The results show that compared with the traditional ventilation mode,the hybrid ventilation mode has more uniform temperature distribution,better thermal comfort,higher energy utilization efficiency and lower degree of air short-circuit of supply air.展开更多
Mature technologies exist to reduce the heating,ventilation,and air-conditioning(HVAC) energy associated with ventilation and use ventilation proactively to save energy.This study investigated the energy use impacts i...Mature technologies exist to reduce the heating,ventilation,and air-conditioning(HVAC) energy associated with ventilation and use ventilation proactively to save energy.This study investigated the energy use impacts in U.S.office buildings of multiple alternative ventilation strategies that combined:economizing,demand controlled ventilation(DCV),supply air temperature reset(SR),and/or a doubled ventilation rate.We used energy simulations in a Monte Carlo analysis,sampling 17 building inputs and varying locations to match the climate zone distribution of the U.S.office stock.Results indicated the possibility for significant savings compared to a baseline that ventilated constantly at a minimum rate in both a small office type with a constant air volume(CAV) HVAC system and a medium office type with a variable air volume(VAV) system.In 95%of instances,HVAC source energy savings were 5-25%in the small-CAV office(median:11%) and 6-42%in the medium-VAV office(median:27%).In the small-CAV office,DCV typically saved the most energy,usually from heating,and heating degree days and occupant density were decisive influences.In the medium-VAV office,economizing and SR were most important,DCV usually only had minor impacts,and zone temperature setpoints,along with climate indicators,were the critical influences.Other than infiltration,envelope characteristics did not strongly influence energy impacts.The untapped primary energy savings of alternative ventilation strategies over the 74%of U.S.office floorspace reasonably represented by our modeling was estimated at 36 TWh per year,with an annual value of U.S.$ 1.25 billion.展开更多
卫星地面站供电设计是地面站设计的重要组成部分,关系到整个地面站的安全和稳定运行。介绍卫星地面站供电系统的基本组成,包括供电输入端、不间断电源(Uninterruptible Power Supply,UPS)和负载输出端,并针对现有卫星地面站的供电不足,...卫星地面站供电设计是地面站设计的重要组成部分,关系到整个地面站的安全和稳定运行。介绍卫星地面站供电系统的基本组成,包括供电输入端、不间断电源(Uninterruptible Power Supply,UPS)和负载输出端,并针对现有卫星地面站的供电不足,提出不同电力环境下的优化设计方法,全面提升地面站的供电系统可靠性和使用效能,为后续卫星地面站供电设计提供重要参考。展开更多
文摘Based on the method of compound and additional conditions under the conditions of the equal temperature rise and the equal potential drop (P.D.) of resistance, the application of design software of dry-type air-core reactor is introduced in this thesis. The analytical methods of the inductance are also given. This approach is proved entirely feasible in theory through the simplification with Bartky transformation, and is able to quickly and accurately calculate reactor inductance. This paper presents the analytical methods of the loss of dry-type air-core reactor as well.
基金supported by the National Natural Science Foundation of China(Grant No.51276033,No.51541608)
文摘In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of fluidized bed and strengthen the drying performance of oil shale particles, is creatively designed in this study. The rotating speed of the asynchronous rotating air distributor with an embedded center disk and an encircling disk is regulated to achieve the different air supply conditions. The impacts of different drying conditions on the drying characteristic of Wangqing oil shale particles are studied with the help of electronic scales. The dynamics of experimental data is analyzed with 9 common drying models. The results indicate that the particles distribution in fluidized bed can be improved and the drying time can be reduced by decreasing the rotating speed of the embedded center disk and increasing the rotating speed of the encircling disk. The drying process of oil shale particles involves a rising drying rate period, a constant drying rate period and a falling drying rate period. Regulating the air distributor rotating speed reasonably will accelerate the shift of particles from the rising drying rate period to the falling drying rate period directly. The two-term model fits properly the oil shale particles drying simulation among 9 drying models at different air supply conditions. Yet the air absorbed in the particles' pores is diffused along with the moisture evaporation, and a small amount of moisture remains on the wall of fluidized bed in each experiment, thus, the values of drying simulation are less than the experimental values.
文摘The traditional ventilation mode of subway vehicles adopts the form that the inlets and outlets are placed on the upper part of the cabin.The air distribution formed in this mode often cause serious problems of thermal comfort and energy consumption.In order to solve these problems caused by the traditional ventilation mode,a new hybrid ventilation mode was proposed.The hybrid ventilation mode uses both upper and underside air supply inlets.A method for evaluating the air distribution performance of subway air conditioning was developed.The method applies non-uniformity coefficients,maximum temperature difference,air diffusion performance index,modified energy utilization coefficient and Air short-circuit comprehensive coefficient.Air short-circuit comprehensive coefficient was a new index to evaluate the degree of air short-circuit of supply air.Based on the airflow simulation,the air distribution performance for the hybrid ventilation mode was evaluated using these indexes,and compared with the traditional ventilation mode.The results show that compared with the traditional ventilation mode,the hybrid ventilation mode has more uniform temperature distribution,better thermal comfort,higher energy utilization efficiency and lower degree of air short-circuit of supply air.
文摘Mature technologies exist to reduce the heating,ventilation,and air-conditioning(HVAC) energy associated with ventilation and use ventilation proactively to save energy.This study investigated the energy use impacts in U.S.office buildings of multiple alternative ventilation strategies that combined:economizing,demand controlled ventilation(DCV),supply air temperature reset(SR),and/or a doubled ventilation rate.We used energy simulations in a Monte Carlo analysis,sampling 17 building inputs and varying locations to match the climate zone distribution of the U.S.office stock.Results indicated the possibility for significant savings compared to a baseline that ventilated constantly at a minimum rate in both a small office type with a constant air volume(CAV) HVAC system and a medium office type with a variable air volume(VAV) system.In 95%of instances,HVAC source energy savings were 5-25%in the small-CAV office(median:11%) and 6-42%in the medium-VAV office(median:27%).In the small-CAV office,DCV typically saved the most energy,usually from heating,and heating degree days and occupant density were decisive influences.In the medium-VAV office,economizing and SR were most important,DCV usually only had minor impacts,and zone temperature setpoints,along with climate indicators,were the critical influences.Other than infiltration,envelope characteristics did not strongly influence energy impacts.The untapped primary energy savings of alternative ventilation strategies over the 74%of U.S.office floorspace reasonably represented by our modeling was estimated at 36 TWh per year,with an annual value of U.S.$ 1.25 billion.
文摘卫星地面站供电设计是地面站设计的重要组成部分,关系到整个地面站的安全和稳定运行。介绍卫星地面站供电系统的基本组成,包括供电输入端、不间断电源(Uninterruptible Power Supply,UPS)和负载输出端,并针对现有卫星地面站的供电不足,提出不同电力环境下的优化设计方法,全面提升地面站的供电系统可靠性和使用效能,为后续卫星地面站供电设计提供重要参考。