期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics
1
作者 Qi-Hong Yang Yu Yang +3 位作者 Yang-Tao Deng Qiao-Lin He He-Lin Gong Shi-Quan Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第10期178-200,共23页
Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are ea... Machine learning-based modeling of reactor physics problems has attracted increasing interest in recent years.Despite some progress in one-dimensional problems,there is still a paucity of benchmark studies that are easy to solve using traditional numerical methods albeit still challenging using neural networks for a wide range of practical problems.We present two networks,namely the Generalized Inverse Power Method Neural Network(GIPMNN)and Physics-Constrained GIPMNN(PC-GIPIMNN)to solve K-eigenvalue problems in neutron diffusion theory.GIPMNN follows the main idea of the inverse power method and determines the lowest eigenvalue using an iterative method.The PC-GIPMNN additionally enforces conservative interface conditions for the neutron flux.Meanwhile,Deep Ritz Method(DRM)directly solves the smallest eigenvalue by minimizing the eigenvalue in Rayleigh quotient form.A comprehensive study was conducted using GIPMNN,PC-GIPMNN,and DRM to solve problems of complex spatial geometry with variant material domains from the fleld of nuclear reactor physics.The methods were compared with the standard flnite element method.The applicability and accuracy of the methods are reported and indicate that PC-GIPMNN outperforms GIPMNN and DRM. 展开更多
关键词 Neural network reactor physics Neutron diffusion equation Eigenvalue problem Inverse power method
下载PDF
Second-Order MaxEnt Predictive Modelling Methodology. III: Illustrative Application to a Reactor Physics Benchmark
2
作者 Ruixian Fang Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2023年第2期295-322,共28页
This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the ... This work illustrates the innovative results obtained by applying the recently developed the 2<sup>nd</sup>-order predictive modeling methodology called “2<sup>nd</sup>- BERRU-PM”, where the acronym BERRU denotes “best-estimate results with reduced uncertainties” and “PM” denotes “predictive modeling.” The physical system selected for this illustrative application is a polyethylene-reflected plutonium (acronym: PERP) OECD/NEA reactor physics benchmark. This benchmark is modeled using the neutron transport Boltzmann equation (involving 21,976 uncertain parameters), the solution of which is representative of “large-scale computations.” The results obtained in this work confirm the fact that the 2<sup>nd</sup>-BERRU-PM methodology predicts best-estimate results that fall in between the corresponding computed and measured values, while reducing the predicted standard deviations of the predicted results to values smaller than either the experimentally measured or the computed values of the respective standard deviations. The obtained results also indicate that 2<sup>nd</sup>-order response sensitivities must always be included to quantify the need for including (or not) the 3<sup>rd</sup>- and/or 4<sup>th</sup>-order sensitivities. When the parameters are known with high precision, the contributions of the higher-order sensitivities diminish with increasing order, so that the inclusion of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities may suffice for obtaining accurate predicted best- estimate response values and best-estimate standard deviations. On the other hand, when the parameters’ standard deviations are sufficiently large to approach (or be outside of) the radius of convergence of the multivariate Taylor-series which represents the response in the phase-space of model parameters, the contributions stemming from the 3<sup>rd</sup>- and even 4<sup>th</sup>-order sensitivities are necessary to ensure consistency between the computed and measured response. In such cases, the use of only the 1<sup>st</sup>-order sensitivities erroneously indicates that the computed results are inconsistent with the respective measured response. Ongoing research aims at extending the 2<sup>nd</sup>-BERRU-PM methodology to fourth-order, thus enabling the computation of third-order response correlations (skewness) and fourth-order response correlations (kurtosis). 展开更多
关键词 Second-Order Predictive Modeling OECD/NEA reactor physics Benchmark Data Assimilation Best-Estimate Results Uncertainty Quantification Reduced Predicted Uncertainties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部