This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta re...The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta region of Nigeria. Using daily or 24-hourly annual maximum series (AMS) data with the Indian Meteorological Department (IMD) and the modified Chowdury Indian Meteorological Department (MCIMD) models were adopted to downscale the time series data. Mann-Kendall (MK) trend and Sen’s Slope Estimator (SSE) test showed a statistically significant trend for Uyo and Benin, while Port Harcourt and Warri showed mild trends. The Sen’s Slope magnitude and variation rate were 21.6, 10.8, 6.00 and 4.4 mm/decade, respectively. The trend change-point analysis showed the initial rainfall change-point dates as 2002, 2005, 1988, and 2000 for Uyo, Benin, Port Harcourt, and Warri, respectively. These prove positive changing climatic conditions for rainfall in the study area. Erosion and flood control facilities analysis and design in the Niger Delta will require the application of Non-stationary IDF modelling.展开更多
Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with o...Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with opportunities to discover valuable intelligence from the massive user generated text streams. However, the traditional content analysis frameworks are inefficient to handle the unprecedentedly big volume of unstructured text streams and the complexity of text analysis tasks for the real time opinion analysis on the big data streams. In this paper, we propose a parallel real time sentiment analysis system: Social Media Data Stream Sentiment Analysis Service (SMDSSAS) that performs multiple phases of sentiment analysis of social media text streams effectively in real time with two fully analytic opinion mining models to combat the scale of text data streams and the complexity of sentiment analysis processing on unstructured text streams. We propose two aspect based opinion mining models: Deterministic and Probabilistic sentiment models for a real time sentiment analysis on the user given topic related data streams. Experiments on the social media Twitter stream traffic captured during the pre-election weeks of the 2016 Presidential election for real-time analysis of public opinions toward two presidential candidates showed that the proposed system was able to predict correctly Donald Trump as the winner of the 2016 Presidential election. The cross validation results showed that the proposed sentiment models with the real-time streaming components in our proposed framework delivered effectively the analysis of the opinions on two presidential candidates with average 81% accuracy for the Deterministic model and 80% for the Probabilistic model, which are 1% - 22% improvements from the results of the existing literature.展开更多
This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period b...This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period between January 2001 through June 2003 including temperature data from the expendable bathythermographs (XBT), thermistor data from the Tropical Ocean Global Atmosphere Tropical Atmosphere-Ocean (TOGA-TAO) mooring array, sea level anomalies from the Topex/Poseidon and Jason-1 altimetry (T/P-J), and temperature and salinity profiles from the Array for Real-time Geostrophic Oceanography (ARGO) floats. An efficient three-dimensional variational analysis-based method was introduced to assimilate the above data into the tropical-Pacific circulation model. To evaluate the impact of the individual component of the observing system, four observation system experiments were carried out. The experiment that assimilated all four components of the observing system was taken as the reference. The other three experiments were implemented by withholding one of the four components. Results show that the spatial distribution of the data influences its relative contribution. XBT observations produce the most distinguished effects on temperature analyses in the off-equatorial region due to the large amount of measurements and high quality. Similarly, the impact of TAO is dominant in the equatorial region due to the focus of the spatial distribution. The Topex/Poseidon-Jason-1 can be highly complementary where the XBT and TAO observations are sparse. The contribution of XBT or TAO on the assimilated salinity is made by the model dynamics because no salinity observations from them are assimilated. Therefore, T/P-J, as a main source for providing salinity data, has been shown to have greater impacts than either XBT or TAO on the salinity analysis. Although ARGO includes the subsurface observations, the relatively smaller number of observation makes it have the smallest contribution to the assimilation system.展开更多
A new dynamic model identification method is developed for continuous-time series analysis and forward prediction applications. The quantum of data is defined over moving time intervals in sliding window coordinates f...A new dynamic model identification method is developed for continuous-time series analysis and forward prediction applications. The quantum of data is defined over moving time intervals in sliding window coordinates for compressing the size of stored data while retaining the resolution of information. Quantum vectors are introduced as the basis of a linear space for defining a Dynamic Quantum Operator (DQO) model of the system defined by its data stream. The transport of the quantum of compressed data is modeled between the time interval bins during the movement of the sliding time window. The DQO model is identified from the samples of the real-time flow of data over the sliding time window. A least-square-fit identification method is used for evaluating the parameters of the quantum operator model, utilizing the repeated use of the sampled data through a number of time steps. The method is tested to analyze, and forward-predict air temperature variations accessed from weather data as well as methane concentration variations obtained from measurements of an operating mine. The results show efficient forward prediction capabilities, surpassing those using neural networks and other methods for the same task.展开更多
The objective of this paper is to utilize images of spatial and temporal fluctuations of temperature over the Earth to study the global climate variation. We illustrated that monthly temperature observations from weat...The objective of this paper is to utilize images of spatial and temporal fluctuations of temperature over the Earth to study the global climate variation. We illustrated that monthly temperature observations from weather stations could be decomposed as components with different time scales based on their spectral distribution. Kolmogorov-Zurbenko (KZ) filters were applied to smooth and interpolate gridded temperature data to construct global maps for long-term (≥ 6 years) trends and El Nino-like (2 to 5 years) movements over the time period of 1893 to 2008. Annual temperature seasonality, latitude and altitude effects have been carefully accounted for to capture meaningful spatiotemporal patterns of climate variability. The result revealed striking facts about global temperature anomalies for specific regions. Correlation analysis and the movie of thermal maps for El Nino-like component clearly supported the existence of such climate fluctuations in time and space.展开更多
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
文摘The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta region of Nigeria. Using daily or 24-hourly annual maximum series (AMS) data with the Indian Meteorological Department (IMD) and the modified Chowdury Indian Meteorological Department (MCIMD) models were adopted to downscale the time series data. Mann-Kendall (MK) trend and Sen’s Slope Estimator (SSE) test showed a statistically significant trend for Uyo and Benin, while Port Harcourt and Warri showed mild trends. The Sen’s Slope magnitude and variation rate were 21.6, 10.8, 6.00 and 4.4 mm/decade, respectively. The trend change-point analysis showed the initial rainfall change-point dates as 2002, 2005, 1988, and 2000 for Uyo, Benin, Port Harcourt, and Warri, respectively. These prove positive changing climatic conditions for rainfall in the study area. Erosion and flood control facilities analysis and design in the Niger Delta will require the application of Non-stationary IDF modelling.
文摘Opinion (sentiment) analysis on big data streams from the constantly generated text streams on social media networks to hundreds of millions of online consumer reviews provides many organizations in every field with opportunities to discover valuable intelligence from the massive user generated text streams. However, the traditional content analysis frameworks are inefficient to handle the unprecedentedly big volume of unstructured text streams and the complexity of text analysis tasks for the real time opinion analysis on the big data streams. In this paper, we propose a parallel real time sentiment analysis system: Social Media Data Stream Sentiment Analysis Service (SMDSSAS) that performs multiple phases of sentiment analysis of social media text streams effectively in real time with two fully analytic opinion mining models to combat the scale of text data streams and the complexity of sentiment analysis processing on unstructured text streams. We propose two aspect based opinion mining models: Deterministic and Probabilistic sentiment models for a real time sentiment analysis on the user given topic related data streams. Experiments on the social media Twitter stream traffic captured during the pre-election weeks of the 2016 Presidential election for real-time analysis of public opinions toward two presidential candidates showed that the proposed system was able to predict correctly Donald Trump as the winner of the 2016 Presidential election. The cross validation results showed that the proposed sentiment models with the real-time streaming components in our proposed framework delivered effectively the analysis of the opinions on two presidential candidates with average 81% accuracy for the Deterministic model and 80% for the Probabilistic model, which are 1% - 22% improvements from the results of the existing literature.
基金supported by the 973 Program(Grant No.2006CB403606)the National Natural Science Foundation of China(Grant No.40606008).
文摘This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period between January 2001 through June 2003 including temperature data from the expendable bathythermographs (XBT), thermistor data from the Tropical Ocean Global Atmosphere Tropical Atmosphere-Ocean (TOGA-TAO) mooring array, sea level anomalies from the Topex/Poseidon and Jason-1 altimetry (T/P-J), and temperature and salinity profiles from the Array for Real-time Geostrophic Oceanography (ARGO) floats. An efficient three-dimensional variational analysis-based method was introduced to assimilate the above data into the tropical-Pacific circulation model. To evaluate the impact of the individual component of the observing system, four observation system experiments were carried out. The experiment that assimilated all four components of the observing system was taken as the reference. The other three experiments were implemented by withholding one of the four components. Results show that the spatial distribution of the data influences its relative contribution. XBT observations produce the most distinguished effects on temperature analyses in the off-equatorial region due to the large amount of measurements and high quality. Similarly, the impact of TAO is dominant in the equatorial region due to the focus of the spatial distribution. The Topex/Poseidon-Jason-1 can be highly complementary where the XBT and TAO observations are sparse. The contribution of XBT or TAO on the assimilated salinity is made by the model dynamics because no salinity observations from them are assimilated. Therefore, T/P-J, as a main source for providing salinity data, has been shown to have greater impacts than either XBT or TAO on the salinity analysis. Although ARGO includes the subsurface observations, the relatively smaller number of observation makes it have the smallest contribution to the assimilation system.
文摘A new dynamic model identification method is developed for continuous-time series analysis and forward prediction applications. The quantum of data is defined over moving time intervals in sliding window coordinates for compressing the size of stored data while retaining the resolution of information. Quantum vectors are introduced as the basis of a linear space for defining a Dynamic Quantum Operator (DQO) model of the system defined by its data stream. The transport of the quantum of compressed data is modeled between the time interval bins during the movement of the sliding time window. The DQO model is identified from the samples of the real-time flow of data over the sliding time window. A least-square-fit identification method is used for evaluating the parameters of the quantum operator model, utilizing the repeated use of the sampled data through a number of time steps. The method is tested to analyze, and forward-predict air temperature variations accessed from weather data as well as methane concentration variations obtained from measurements of an operating mine. The results show efficient forward prediction capabilities, surpassing those using neural networks and other methods for the same task.
文摘The objective of this paper is to utilize images of spatial and temporal fluctuations of temperature over the Earth to study the global climate variation. We illustrated that monthly temperature observations from weather stations could be decomposed as components with different time scales based on their spectral distribution. Kolmogorov-Zurbenko (KZ) filters were applied to smooth and interpolate gridded temperature data to construct global maps for long-term (≥ 6 years) trends and El Nino-like (2 to 5 years) movements over the time period of 1893 to 2008. Annual temperature seasonality, latitude and altitude effects have been carefully accounted for to capture meaningful spatiotemporal patterns of climate variability. The result revealed striking facts about global temperature anomalies for specific regions. Correlation analysis and the movie of thermal maps for El Nino-like component clearly supported the existence of such climate fluctuations in time and space.