期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
基于PCA-Adaboost-GBDT的短期风电功率预测
1
作者 郑伟宏 朱峰刚 +2 位作者 王小娟 胡兵 薛萌萌 《电气自动化》 2024年第4期80-83,共4页
为解决单一预测模型难以准确预测风电功率的问题,提出了一种基于主成分分析(principal component analysis,PCA)-自适应增强(adaptive boosting,Adaboost)-梯度提升树(gradient boosting decision tree,GBDT)的风电功率短期预测方法。使... 为解决单一预测模型难以准确预测风电功率的问题,提出了一种基于主成分分析(principal component analysis,PCA)-自适应增强(adaptive boosting,Adaboost)-梯度提升树(gradient boosting decision tree,GBDT)的风电功率短期预测方法。使用PCA方法对数据降维分析,使用Adaboost-GBDT组合模型对风电功率数据进行训练。结果表明,所提算法在准确性和效率方面都具有明显的优势。研究结果为风电功率准确预测提供参考与借鉴。 展开更多
关键词 风电功率 功率预测 梯度提升树 自适应增强 组合模型
下载PDF
基于VMD与AdaBoost-SCN的海缆振动信号识别方法 被引量:1
2
作者 尚秋峰 黄达 巩彪 《振动与冲击》 EI CSCD 北大核心 2023年第19期231-239,共9页
海底光缆的在线监测和振动信号识别是保证其正常运行的关键技术。搭建了基于布里渊光时域分析系统,模拟不同工况下的海缆振动信号。针对海缆振动信号信息丰富、信噪比低,使用单一随机配置网络(stochastic configuration network,SCN)模... 海底光缆的在线监测和振动信号识别是保证其正常运行的关键技术。搭建了基于布里渊光时域分析系统,模拟不同工况下的海缆振动信号。针对海缆振动信号信息丰富、信噪比低,使用单一随机配置网络(stochastic configuration network,SCN)模型对信号识别准确率不高的问题,提出了自适应增强(adaptive boosting,AdaBoost)算法优化的随机配置网络(AdaBoost-SCN)识别方法。首先用变分模态分解(variational mode decomposition,VMD)算法分解海缆振动信号,构建特征向量;然后采用AdaBoost-SCN算法对振动信号分类。结果表明,所提方法有着很高的精度,并且具有很强的鲁棒性与泛化能力,提高了布里渊光时域分析系统振动信号识别的有效性。 展开更多
关键词 信号识别 变分模态分解(VMD) 随机配置网络(SCN) 自适应增强(adaboost)算法
下载PDF
基于集成学习的交通事故严重程度预测研究与应用 被引量:2
3
作者 单永航 张希 +2 位作者 胡川 丁涛军 姚远 《计算机工程》 CAS CSCD 北大核心 2024年第2期33-42,共10页
目前自动驾驶技术重点是关注如何主动避免碰撞,然而在面对其他交通参与者入侵而导致不可避免的碰撞事故场景时,预测车辆在不同行驶模式下的碰撞严重程度来降低事故严重程度的研究却很少。为此,提出一种双层Stacking事故严重程度预测模... 目前自动驾驶技术重点是关注如何主动避免碰撞,然而在面对其他交通参与者入侵而导致不可避免的碰撞事故场景时,预测车辆在不同行驶模式下的碰撞严重程度来降低事故严重程度的研究却很少。为此,提出一种双层Stacking事故严重程度预测模型。基于真实交通事故数据集NASS-CDS完成训练,模型输入为车辆传感器可感知得到的事故相关特征,输出为车内乘员最高受伤级别。在第1层中,通过实验对不同学习器组合进行训练,最终综合考虑预测性能以及耗时挑选K近邻、自适应提升树、极度梯度提升树作为基学习器;在第2层中,为降低过拟合,采用逻辑回归作为元学习器。实验结果表明,该方法准确率达到85.01%,在精确率、召回率和F1值方面优于其他个体模型和集成模型,该预测结果可作为智能车辆决策规划模块先验信息,帮助车辆做出正确的决策,减缓事故损害。最后阐述了模型在L_(2)辅助驾驶与L_(4)自动驾驶车辆中的应用,在常规车辆安全防护的基础上进一步提升车辆的安全性。 展开更多
关键词 交通安全 交通事故严重程度预测 智能车辆 集成学习 K近邻 自适应提升树 极度梯度提升树 逻辑回归
下载PDF
基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估 被引量:1
4
作者 管筝 印涌强 +1 位作者 张晓祥 陈跃红 《应用科学学报》 CAS CSCD 北大核心 2024年第3期388-404,共17页
为了更好地分析空间异质性对山洪灾害易发性评估的影响,建立了基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估模型。首先,选取中国江西省12338个小流域为研究区,对各时段不同频率降雨量指标进行K-means聚类。其次,以误差平... 为了更好地分析空间异质性对山洪灾害易发性评估的影响,建立了基于K-means聚类与集成学习算法的小流域山洪灾害易发性评估模型。首先,选取中国江西省12338个小流域为研究区,对各时段不同频率降雨量指标进行K-means聚类。其次,以误差平方和与平均轮廓系数为聚类效果评价指标,将小流域分为2个类内聚集、类外分散的子集。最后,针对不同子集,从几何特征、环境特征以及降水特征3个方面选取平均坡度、形心高程、形状系数、最长汇流路径比降、地形湿度指数、归一化植被指数、距离河流最近距离、降雨量、洪峰模数以及汇流时间10个山洪影响因素,应用自适应增强算法与极致梯度提升算法进行山洪灾害易发性评估。研究发现,降水是导致山洪灾害的重要因素,江西省高降水区域山洪灾害易发程度普遍高于低降水区,同时省内高风险区分布较为分散,主要分布在东北区域与西北边缘区域。对聚类后两类相似小流域分别进行山洪易发性评估,接受者操作特征曲线下面积值均在0.90以上,精度较聚类前有所提高。聚类策略作为易发性评估模型的前驱过程,可以有效解决小流域异质性问题。 展开更多
关键词 空间异质性 K-MEANS聚类 集成学习 自适应增强 极致梯度提升 山洪灾害
下载PDF
P300 Speller中基于AdaBoost SVM的导联筛选研究 被引量:7
5
作者 綦宏志 许敏鹏 +3 位作者 明东 万柏坤 刘志朋 殷涛 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第5期985-990,共6页
P300 Speller是目前少数可以用于临床残疾人功能补偿的脑-机接口系统,P300 Speller的字符识别效率与脑电信号采集的头皮表面电极位置密切相关,过多的电极不但增加了使用者的不适感,且易引入噪声干扰进而影响系统的稳定性。采用并发展了... P300 Speller是目前少数可以用于临床残疾人功能补偿的脑-机接口系统,P300 Speller的字符识别效率与脑电信号采集的头皮表面电极位置密切相关,过多的电极不但增加了使用者的不适感,且易引入噪声干扰进而影响系统的稳定性。采用并发展了一种基于AdaBoost SVM(adaptive boosting support vector machine)的特征筛选方法,对脑电导联进行优化筛选,通过对6位受试者的实验数据处理及分析,结果表明该方法可以在不显著影响识别效率的基础上降低导联数量76%以上。另外,相较于经典的SVM-RFE特征筛选方法,该方法极大降低了计算复杂度,更适用于训练数据庞大的脑电特征优化问题。 展开更多
关键词 脑-机接口 自适应增强 支持向量机 字符识别
下载PDF
BP-AdaBoost模型在光纤陀螺零偏温度补偿中的应用 被引量:17
6
作者 刘元元 杨功流 李思宜 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第2期235-239,共5页
针对光纤陀螺零偏漂移随温度呈复杂的非线性变化,建立了BP-AdaBoost(Back Propagation neural network,Adaptive Boosting)模型对零偏进行补偿,改善了光纤陀螺的零偏稳定性能.同时,研究了模型参数对预测精度的影响,给出了BP神经网络隐... 针对光纤陀螺零偏漂移随温度呈复杂的非线性变化,建立了BP-AdaBoost(Back Propagation neural network,Adaptive Boosting)模型对零偏进行补偿,改善了光纤陀螺的零偏稳定性能.同时,研究了模型参数对预测精度的影响,给出了BP神经网络隐含层神经元个数的选择以及AdaBoost模型迭代次数的确定方法.运用AdaBoost算法提升单个BP神经网络的预测能力,提高了集成模型整体的预测精度.对采集的光纤陀螺输出实测数据进行了事后仿真,结果表明,BP-AdaBoost模型相比传统的线性回归模型、混合线性回归模型、单个BP神经网络模型的补偿效果更显著,验证了该模型的有效性,具有重大的工程应用参考价值. 展开更多
关键词 光纤陀螺 温度补偿 adaboost算法 BP神经网络
下载PDF
基于分类器相关性的Adaboost人脸检测算法 被引量:3
7
作者 张君昌 李倩 贾靖 《计算机应用》 CSCD 北大核心 2009年第12期3346-3348,共3页
为了提高传统Adaboost算法的集成性能,提出一种基于分类器相关性的Adaboost算法。该方法在弱分类器的训练过程中加入分类器的相关性判定,使每一个弱分类器的生成不仅与当前分类器有关,而且与前面若干个分类器相关,并将由此生成的弱分类... 为了提高传统Adaboost算法的集成性能,提出一种基于分类器相关性的Adaboost算法。该方法在弱分类器的训练过程中加入分类器的相关性判定,使每一个弱分类器的生成不仅与当前分类器有关,而且与前面若干个分类器相关,并将由此生成的弱分类器组合成新的强分类器。在CMU正面人脸检测集上的仿真结果表明,较传统的Adaboost算法,基于分类器相关性的Adaboost人脸检测算法具有更好的检测效率,同时降低了误检率。 展开更多
关键词 人脸检测 分类器相关性 自适应提升算法
下载PDF
基于多阈值Boosting方法的人脸检测 被引量:2
8
作者 钟向阳 凌捷 《计算机工程》 CAS CSCD 北大核心 2009年第11期172-174,共3页
Adaboost算法采用单阈值弱分类器,难以拟合复杂分布,其训练过程收敛速度较慢。针对该问题设计一种多阈值弱学习器,利用平方和减少最大化准则划分节点并生成弱分类器,在训练数据集上采用GAB算法将弱分类器提升为强分类器。实验结果表明,... Adaboost算法采用单阈值弱分类器,难以拟合复杂分布,其训练过程收敛速度较慢。针对该问题设计一种多阈值弱学习器,利用平方和减少最大化准则划分节点并生成弱分类器,在训练数据集上采用GAB算法将弱分类器提升为强分类器。实验结果表明,在弱分类器数目相同的情况下,该方法的正样本误报率低于Adaboost算法。 展开更多
关键词 人脸检测 boosting方法 实值adaboost 平缓adaboost
下载PDF
基于AdaBoost的改进模糊分类规则集成学习 被引量:2
9
作者 方敏 王宝树 《电子与信息学报》 EI CSCD 北大核心 2005年第5期835-837,共3页
基于集成学习提出了一种新的模糊分类规则的产生算法。将分类规则的前件、后件模糊化,在自适应提升(Adaptive Boosting,AdaBoost)算法的迭代中,调整训练实例的分布,利用遗传算法产生模糊分类规则。并在规则学习的适应度函数中引入训练... 基于集成学习提出了一种新的模糊分类规则的产生算法。将分类规则的前件、后件模糊化,在自适应提升(Adaptive Boosting,AdaBoost)算法的迭代中,调整训练实例的分布,利用遗传算法产生模糊分类规则。并在规则学习的适应度函数中引入训练实例的分布,使得模糊分类规则在产生阶段就考虑相互之间的协作,产生具有互补性的分类规则集。从而改善了模糊分类规则的整体识别能力,提高了分类识别精度。 展开更多
关键词 模糊分类规则 adaboost算法 分类器集成
下载PDF
基于GAN-AdaBoost-DT不平衡分类算法的信用卡欺诈分类 被引量:24
10
作者 莫赞 盖彦蓉 樊冠龙 《计算机应用》 CSCD 北大核心 2019年第2期618-622,共5页
针对传统单个分类器在不平衡数据上分类效果有限的问题,基于对抗生成网络(GAN)和集成学习方法,提出一种新的针对二类不平衡数据集的分类方法——对抗生成网络-自适应增强-决策树(GAN-AdaBoost-DT)算法。首先,利用GAN训练得到生成模型,... 针对传统单个分类器在不平衡数据上分类效果有限的问题,基于对抗生成网络(GAN)和集成学习方法,提出一种新的针对二类不平衡数据集的分类方法——对抗生成网络-自适应增强-决策树(GAN-AdaBoost-DT)算法。首先,利用GAN训练得到生成模型,生成模型生成少数类样本,降低数据的不平衡性;其次,将生成的少数类样本代入自适应增强(AdaBoost)模型框架,更改权重,改进AdaBoost模型,提升以决策树(DT)为基分类器的AdaBoost模型的分类性能。使用受测者工作特征曲线下面积(AUC)作为分类评价指标,在信用卡诈骗数据集上的实验分析表明,该算法与合成少数类样本集成学习相比,准确率提高了4. 5%,受测者工作特征曲线下面积提高了6. 5%;对比改进的合成少数类样本集成学习,准确率提高了4. 9%,AUC值提高了5. 9%;对比随机欠采样集成学习,准确率提高了4. 5%,受测者工作特征曲线下面积提高了5. 4%。在UCI和KEEL的其他数据集上的实验结果表明,该算法在不平衡二分类问题上能提高总体的准确率,优化分类器性能。 展开更多
关键词 对抗生成网络 集成学习 不平衡分类 二分类 自适应增强 决策树 信用卡欺诈
下载PDF
基于反向传播-自适应提升算法的谐波阻抗估计
11
作者 夏焰坤 任俊杰 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期118-125,共8页
目前,关于量化谐波阻抗的研究大多数是基于系统侧谐波阻抗不发生改变而设定,当系统谐波阻抗变动时,如何估计谐波阻抗的研究相对较少。为此,本文提出一种基于系统谐波阻抗变动背景下的系统谐波阻抗估计新方法。首先,加窗处理谐波电压、... 目前,关于量化谐波阻抗的研究大多数是基于系统侧谐波阻抗不发生改变而设定,当系统谐波阻抗变动时,如何估计谐波阻抗的研究相对较少。为此,本文提出一种基于系统谐波阻抗变动背景下的系统谐波阻抗估计新方法。首先,加窗处理谐波电压、电流测量数据,使用二元线性回归法估算系统谐波阻抗,并用小波包变换对测量数据进行分段,以找出系统谐波阻抗变动的时间;其次,采用反向传播-自适应提升算法精确量化每个采样数据段的系统谐波阻抗;最后,通过仿真与实例分析验证本文方法相较于其他方法具有更好的鲁棒性和精确性。 展开更多
关键词 系统侧谐波阻抗 小波包变换法 反向传播-自适应提升算法 鲁棒性
下载PDF
基于粒特征和连续Adaboost的人脸检测 被引量:3
12
作者 陈春燕 章品正 罗立民 《智能系统学报》 2009年第5期446-452,共7页
提出了一种基于粒特征和连续Adaboost算法的人脸检测方法.它使用粒特征并扩展贝叶斯决策弱分类器,设计具有连续置信度输出的查找表型弱分类器形式,构造出弱分类空间,使用大规模的训练集和验证集,采用连续Adaboost算法学习得到Boosting... 提出了一种基于粒特征和连续Adaboost算法的人脸检测方法.它使用粒特征并扩展贝叶斯决策弱分类器,设计具有连续置信度输出的查找表型弱分类器形式,构造出弱分类空间,使用大规模的训练集和验证集,采用连续Adaboost算法学习得到Boosting动态级联型的人脸检测器.在CMU-MIT正面人脸测试集上,误报20个时,检测率为90%以上.在一台Pentium Dual-1.2 GHz的PC上,处理一幅大小为320×240像素大小的图片平均需100 ms.实验结果表明该方法取得了比较好的精度和速度. 展开更多
关键词 粒特征 贝叶斯决策 连续adaboost boosting级联 人脸检测
下载PDF
基于多类指数损失函数逐步添加模型的改进多分类AdaBoost算法 被引量:8
13
作者 翟夕阳 王晓丹 +1 位作者 雷蕾 魏晓辉 《计算机应用》 CSCD 北大核心 2017年第6期1692-1696,共5页
多类指数损失函数逐步添加模型(SAMME)是一种多分类的Ada Boost算法,为进一步提升SAMME算法的性能,针对使用加权概率和伪损失对算法的影响进行研究,在此基础上提出了一种基于基分类器对样本有效邻域分类的动态加权Ada Boost算法SAMME.R... 多类指数损失函数逐步添加模型(SAMME)是一种多分类的Ada Boost算法,为进一步提升SAMME算法的性能,针对使用加权概率和伪损失对算法的影响进行研究,在此基础上提出了一种基于基分类器对样本有效邻域分类的动态加权Ada Boost算法SAMME.RD。首先,确定是否使用加权概率和伪损失;然后,求出待测样本在训练集中的有效邻域;最后,根据基分类器针对有效邻域的分类结果确定基分类器的加权系数。使用UCI数据集进行验证,实验结果表明:使用真实的错误率计算基分类器加权系数效果更好;在数据类别较少且分布平衡时,使用真实概率进行基分类器筛选效果较好;在数据类别较多且分布不平衡时,使用加权概率进行基分类器筛选效果较好。所提的SAMME.RD算法可以有效提高多分类Ada Boost算法的分类正确率。 展开更多
关键词 集成学习 多分类 ADA Boost算法 多类指数损失函数逐步添加模型(SAMME) 动态加权融合
下载PDF
不均衡数据下的采空区煤自燃PCA-AdaBoost预测模型 被引量:7
14
作者 赵琳琳 温国锋 邵良杉 《中国安全科学学报》 CAS CSCD 北大核心 2018年第3期74-78,共5页
为提高不均衡数据下采空区自然发火预测准确率,选取O2浓度等作为指标,利用主成分分析法(PCA)提取指标的主成分,并将主成分作为自适应增强算法(AdaBoost)输入参数,发火情况作为AdaBoost算法输出参数,建立不均衡数据下采空区自然发火P... 为提高不均衡数据下采空区自然发火预测准确率,选取O2浓度等作为指标,利用主成分分析法(PCA)提取指标的主成分,并将主成分作为自适应增强算法(AdaBoost)输入参数,发火情况作为AdaBoost算法输出参数,建立不均衡数据下采空区自然发火PCA-AdaBoost预测模型;以张家口宣东2号矿为例,选取20组实测数据作为训练样本,用于训练模型;利用受试者工作特征曲线下的面积进行评价预测效果;利用训练好的模型预测15组测试样本,并将结果与粒子群优化支持向量机(PSO-SVM)模型进行比较。结果表明:在不均衡数据集条件下,利用PCA提取的算例的3个主成分包含原始6个指标的86.831%信息,降低了指标相关性,实现了降维;温度和CH4浓度对发火影响更大;所建模型的预测结果与实际情况吻合,其在预测精度和收敛速度方面优于PSO-SVM模型。 展开更多
关键词 自燃 不均衡数据集 主成分分析(PCA) 自适应增强算法(adaboost) 粒子群优化支持向量机(PSO-SVM)
下载PDF
基于Adaboost的配电网单相接地故障选线 被引量:4
15
作者 曾晓丹 陈永往 +1 位作者 郭谋发 陈敦裕 《电气技术》 2018年第3期70-75,共6页
及时准确地检测出故障馈线在谐振接地系统中一直是研究的热点,传统的检测方法一般采用单一故障馈线检测方法,如小波变换法、暂态能量法、五次谐波电流法等。但是这些方法只考虑了部分故障信息,选线的可靠性较低。本文提出了一种基于离... 及时准确地检测出故障馈线在谐振接地系统中一直是研究的热点,传统的检测方法一般采用单一故障馈线检测方法,如小波变换法、暂态能量法、五次谐波电流法等。但是这些方法只考虑了部分故障信息,选线的可靠性较低。本文提出了一种基于离散小波包变换(DWPT)和机器学习的故障选线新方法。对采集到的各馈线暂态零序电流信号做DWPT处理获取时频矩阵,采用统计量对时频矩阵做特征量提取。通过不同故障条件下的大量训练样本形成Adaboost分类器实现故障选线,利用基于PSCAD/EMTDC软件搭建10kV配电网模型。测试结果表明,所提故障选线方法具有较好的识别率。 展开更多
关键词 配电网 故障选线 离散小波包变换 adaboost
下载PDF
AdaBoost的样本权重与组合系数的分析及改进 被引量:4
16
作者 朱亮 徐华 +1 位作者 成金海 朱深 《计算机应用》 CSCD 北大核心 2022年第7期2022-2029,共8页
针对自适应增强(AdaBoost)算法的基分类器线性组合效率低以及过度关注难分样本的问题,提出了基于间隔理论的两种改进算法WPIAda与WPIAda.M。首先,WPIAda与WPIAda.M算法都将样本权值的更新分为四种情形,从而增加间隔从正到负变化的样本... 针对自适应增强(AdaBoost)算法的基分类器线性组合效率低以及过度关注难分样本的问题,提出了基于间隔理论的两种改进算法WPIAda与WPIAda.M。首先,WPIAda与WPIAda.M算法都将样本权值的更新分为四种情形,从而增加间隔从正到负变化的样本权值来抑制间隔的负向移动,并减少间隔处于零点的样本数量;其次,WPIAda.M算法根据基分类器的错误率与样本权重的分布状态,给出新的基分类器系数求解方法,从而提高基分类器的组合效率。在10个UCI数据集上,与dfAda、skAda、swaAda等算法相比,WPIAda和WPIAda.M算法的测试误差分别平均降低了7.46个百分点和7.64个百分点;AUC分别提高了11.65个百分点和11.92个百分点。实验结果表明,WPIAda和WPIAda.M算法可以有效降低对难分样本的关注,并且WPIAda.M算法能够更高效地集成基分类器,因此两种算法均可进一步提高分类性能。 展开更多
关键词 自适应增强 间隔理论 样本权重 基分类器 组合效率
下载PDF
基于Adaboost的作战目标属性判定方法 被引量:2
17
作者 李园 史宪铭 +1 位作者 李亚娟 赵美 《系统工程与电子技术》 EI CSCD 北大核心 2022年第4期1256-1262,共7页
传统作战目标属性判定主要采用指挥员现场判断的定性方法,具有一定的主观性,并且由于缺乏较为成熟固定的算法而难以纳入指挥平台中。针对此问题,结合作战目标属性判定关键影响因素分析,提出一种基于自适应提升(adaptive boosting,Adaboo... 传统作战目标属性判定主要采用指挥员现场判断的定性方法,具有一定的主观性,并且由于缺乏较为成熟固定的算法而难以纳入指挥平台中。针对此问题,结合作战目标属性判定关键影响因素分析,提出一种基于自适应提升(adaptive boosting,Adaboost)的作战目标属性判定方法。首先,针对目标有效面积、目标配置区域面积等关键因素,采用单层决策树算法构建弱分类器。然后,利用Adaboost对弱分类器进行加权组合,形成作战目标属性判定的强分类模型。最后,进行了示例分析,并与决策树、支持向量机和人工神经网络3种属性判定方法进行对比仿真实验,证明了所提方法的正确性和优越性。 展开更多
关键词 作战目标 目标分类 自适应提升 决策树
下载PDF
基于差量特征与AdaBoost的家用负荷识别方法研究 被引量:1
18
作者 王岩俊 蔡高琰 +1 位作者 骆德汉 梁炳基 《信息技术与网络安全》 2022年第3期78-82,共5页
针对家用负荷提出了一种使用智能电表进行数据采集的非侵入式负荷在线识别方法。该方法使用智能电表计算出负荷的差量特征向量预先建立特征库,训练以决策树作为弱分类器的AdaBoost分类器模型,利用负荷投切时电表的告警信息中包含的特征... 针对家用负荷提出了一种使用智能电表进行数据采集的非侵入式负荷在线识别方法。该方法使用智能电表计算出负荷的差量特征向量预先建立特征库,训练以决策树作为弱分类器的AdaBoost分类器模型,利用负荷投切时电表的告警信息中包含的特征向量进行分类以实现负荷在线识别,实时性好且提高了单一决策树模型的识别效果。实验结果证明了该方法的可行性,实现了负荷使用信息的获取,具有较好的实际应用价值。 展开更多
关键词 非侵入式负荷识别 智能电表 差量特征 adaboost
下载PDF
Grain Yield Predict Based on GRA-AdaBoost-SVR Model
19
作者 Diantao Hu Cong Zhang +2 位作者 Wenqi Cao Xintao Lv Songwu Xie 《Journal on Big Data》 2021年第2期65-76,共12页
Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper propos... Grain yield security is a basic national policy of China,and changes in grain yield are influenced by a variety of factors,which often have a complex,non-linear relationship with each other.Therefore,this paper proposes a Grey Relational Analysis-Adaptive Boosting-Support Vector Regression(GRA-AdaBoost-SVR)model,which can ensure the prediction accuracy of the model under small sample,improve the generalization ability,and enhance the prediction accuracy.SVR allows mapping to high-dimensional spaces using kernel functions,good for solving nonlinear problems.Grain yield datasets generally have small sample sizes and many features,making SVR a promising application for grain yield datasets.However,the SVR algorithm’s own problems with the selection of parameters and kernel functions make the model less generalizable.Therefore,the Adaptive Boosting(AdaBoost)algorithm can be used.Using the SVR algorithm as a training method for base learners in the AdaBoost algorithm.Effectively address the generalization capability problem in SVR algorithms.In addition,to address the problem of sensitivity to anomalous samples in the AdaBoost algorithm,the GRA method is used to extract influence factors with higher correlation and reduce the number of anomalous samples.Finally,applying the GRA-AdaBoost-SVR model to grain yield forecasting in China.Experiments were conducted to verify the correctness of the model and to compare the effectiveness of several traditional models applied to the grain yield data.The results show that the GRA-AdaBoost-SVR algorithm improves the prediction accuracy,the model is smoother,and confirms that the model possesses better prediction performance and better generalization ability. 展开更多
关键词 Grey Relational Analysis(GRA) Support Vector Regression(SVR) adaptive boosting algorithm(adaboost) grain yield prediction
下载PDF
机器学习算法在房地产企业财务风险预警中的性能比较 被引量:2
20
作者 周传华 周子涵 +1 位作者 夏徐东 周东东 《科技和产业》 2023年第15期43-48,共6页
基于AdaBoost-SVM的房地产企业财务风险预警模型将支持向量机(SVM)和自适应增强(AdaBoost)算法结合在一起,选取19个财务指标,基于60家房地产上市公司2005—2021年的财务面板数据进行仿真计算以及同类预警模型性能对比分析。结果表明,构... 基于AdaBoost-SVM的房地产企业财务风险预警模型将支持向量机(SVM)和自适应增强(AdaBoost)算法结合在一起,选取19个财务指标,基于60家房地产上市公司2005—2021年的财务面板数据进行仿真计算以及同类预警模型性能对比分析。结果表明,构建的算法模型在企业财务风险评估预测性能上优于同类4种算法模型,可有效帮助房地产企业提前预警潜在危机,防范财务风险,提升企业的竞争能力。 展开更多
关键词 房地产企业 财务风险预警 支持向量机(SVM) 自适应增强(adaboost) 仿真计算
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部