We characterise the positive cone of a real C^(*)-algebra geometrically.Given an open coneΩin a real Banach space V,with the closureΩ,we show thatΩis the interior of the positive cone of a unital real C^(*)-algebra...We characterise the positive cone of a real C^(*)-algebra geometrically.Given an open coneΩin a real Banach space V,with the closureΩ,we show thatΩis the interior of the positive cone of a unital real C^(*)-algebra if and only if it is a Finsler symmetric cone with an orientable extension,which is equivalent to the condition that V is,in an equivalent norm,the Hermitian part of a unital real C^(*)-algebra with the positive coneΩ.展开更多
We prove analogs of the Kaplansky Density Theorem and the Kadison Transitivity Theorem for irreducible representations of a real C*-algebra on a real Hilbert space. Specifically, if a C*-algebra is acting irreducibl...We prove analogs of the Kaplansky Density Theorem and the Kadison Transitivity Theorem for irreducible representations of a real C*-algebra on a real Hilbert space. Specifically, if a C*-algebra is acting irreducibly on a real Hilbert space, then the Hilbert space has either a real, complex, or quaternionic structure with respect to which the density and transitivity theorems hold.展开更多
Let A be a unital simple C-algebra of real rank zero,stable rank one,with weakly unperforated K<sub>0</sub>(A)and unique normalized quasi-trace τ,and let X be a compact metric space.We show that two mon...Let A be a unital simple C-algebra of real rank zero,stable rank one,with weakly unperforated K<sub>0</sub>(A)and unique normalized quasi-trace τ,and let X be a compact metric space.We show that two monomorphisms Φ,Ψ:C(X)→A are approximately unitarily equivalent if and only if Φ and Ψ induce the same element in KL(C(X),A)and the two linear functionals τ ο Φ and τ ο Φ are equal.We also show that,with an injectivity condition,an almost multiplicative morphism from C(X) into A with vanishing KK-obstacle is close to a homomorphism.展开更多
In this paper,we prove the generalized Hyers-Ulam-Rassias stability of universal Jensen's equations in Banach modules over a unital C~*-algebra.It is applied to show the stability of universal Jensen's equatio...In this paper,we prove the generalized Hyers-Ulam-Rassias stability of universal Jensen's equations in Banach modules over a unital C~*-algebra.It is applied to show the stability of universal Jensen's equations in a Hilbert module over a unital C~*-algebra.Moreover,we prove the stability of linear operators in a Hilbert module over a unitat C~*-algebra.展开更多
The authors prove that the crossed product of an infinite dimensional simple separable unital C*-algebra with stable rank one by an action of a finite group with the tracial Rokhlin property has again stable rank one....The authors prove that the crossed product of an infinite dimensional simple separable unital C*-algebra with stable rank one by an action of a finite group with the tracial Rokhlin property has again stable rank one. It is also proved that the crossed product of an infinite dimensional simple separable unital C*-algebra with real rank zero by an action of a finite group with the tracial Rokhlin property has again real rank zero.展开更多
基金supported by the Engineering and Physical Sciences Research Council,UK(Grant No.EP/R044228/1).
文摘We characterise the positive cone of a real C^(*)-algebra geometrically.Given an open coneΩin a real Banach space V,with the closureΩ,we show thatΩis the interior of the positive cone of a unital real C^(*)-algebra if and only if it is a Finsler symmetric cone with an orientable extension,which is equivalent to the condition that V is,in an equivalent norm,the Hermitian part of a unital real C^(*)-algebra with the positive coneΩ.
文摘We prove analogs of the Kaplansky Density Theorem and the Kadison Transitivity Theorem for irreducible representations of a real C*-algebra on a real Hilbert space. Specifically, if a C*-algebra is acting irreducibly on a real Hilbert space, then the Hilbert space has either a real, complex, or quaternionic structure with respect to which the density and transitivity theorems hold.
基金Research partially supported by NSF Grants DMS 93-01082(H.L)and DMS-9401515(G.G)This work was reported by the first named author at West Coast Operator Algebras Seminar(Sept.1995,Eugene,Oregon)
文摘Let A be a unital simple C-algebra of real rank zero,stable rank one,with weakly unperforated K<sub>0</sub>(A)and unique normalized quasi-trace τ,and let X be a compact metric space.We show that two monomorphisms Φ,Ψ:C(X)→A are approximately unitarily equivalent if and only if Φ and Ψ induce the same element in KL(C(X),A)and the two linear functionals τ ο Φ and τ ο Φ are equal.We also show that,with an injectivity condition,an almost multiplicative morphism from C(X) into A with vanishing KK-obstacle is close to a homomorphism.
基金supported by Korea Research Foundation Grant KRF-2002-041-C00014
文摘In this paper,we prove the generalized Hyers-Ulam-Rassias stability of universal Jensen's equations in Banach modules over a unital C~*-algebra.It is applied to show the stability of universal Jensen's equations in a Hilbert module over a unital C~*-algebra.Moreover,we prove the stability of linear operators in a Hilbert module over a unitat C~*-algebra.
基金Project supported by the National Natural Science Foundation of China (No. 10771161)
文摘The authors prove that the crossed product of an infinite dimensional simple separable unital C*-algebra with stable rank one by an action of a finite group with the tracial Rokhlin property has again stable rank one. It is also proved that the crossed product of an infinite dimensional simple separable unital C*-algebra with real rank zero by an action of a finite group with the tracial Rokhlin property has again real rank zero.