为探讨RPA对PFI汽油车在RDE试验中排放特性影响,采用了AVL-M. O. V. E.轻型车便携式排放测试系统PEMS对某电控进气道多点喷射汽油车分别在西宁高海拔地区进行了平缓、一般和激烈3种驾驶行为下的RDE排放试验研究,试验中未对发动机进行任...为探讨RPA对PFI汽油车在RDE试验中排放特性影响,采用了AVL-M. O. V. E.轻型车便携式排放测试系统PEMS对某电控进气道多点喷射汽油车分别在西宁高海拔地区进行了平缓、一般和激烈3种驾驶行为下的RDE排放试验研究,试验中未对发动机进行任何改动。结果表明:国标对RDE试验要求的RPA值范围较大,不同RPA值对应的驾驶行为直接影响RDE排放试验结果。RDE冷起动阶段对PN和CO排放的影响较大,且对PN排放的影响大于对气体污染物排放的影响。CO和PN排放随RPA值的变化无明显变化规律; NOx和CO2排放量与RPA值呈现正相关。CF(NOx)> CF(CO)> CF(PN),且CF(NOx)随着RPA值的增加,变化幅度明显增大,高原条件下进行RDE试验,需要注意NOx排放。RPA值影响CO2排放在特性曲线图上的分布,RPA值越大,CO2排放在特性曲线图上的分布越靠近上公差。展开更多
The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the ...The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15+EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are -0.42—2.99, -0.32 —0.81 and -0.11—11 with FTP75 testing, 0.11—1.29, -0.77—0.64 and 0.47—10.50 with Beijing 1997 testing and 0.25—1.83, 0.09—0.75 and -0.58—1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI+TWC vehicles' pollution emission factors decrease with different degree. The retrofit vehicle(Santana) will reduce 4.44%—58.44% CO, -4.95%—36.79% NOx, -32.32%—33.89% HC, and -9.39%—14.29% fuel consumption, and especially that the MPI+TWC vehicle will decrease CO by 82.48%—91.76%, NOx by 44.87%—92.79%, HC by 90.00%—93.89% and fuel consumption by 5.44%—10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.展开更多
研究轻型车辆碳排放测算方法,分析车辆碳排放与运行工况关系。基于车辆实际行驶污染物排放(Real Drive Emission,RDE)车载测试数据,以CO_(2)当量CO_(2e)代表碳排放,分析得出碳排放速率随车速、比功率(Vehicle Specific Power,VSP)增大...研究轻型车辆碳排放测算方法,分析车辆碳排放与运行工况关系。基于车辆实际行驶污染物排放(Real Drive Emission,RDE)车载测试数据,以CO_(2)当量CO_(2e)代表碳排放,分析得出碳排放速率随车速、比功率(Vehicle Specific Power,VSP)增大而上升;运用BP(Back Propagation)神经网络算法建立车辆碳排放与车速、加速度、比功率多参数间非线性关系测算模型,计算得出世界轻型车测试循环(World Light Vehicle Test Cycle,WLTC)、新欧洲行驶循环(New European Driving Cycle,NEDC)和中国轻型商用车行驶工况(China Light-duty Vehicle Test Cycle-commercial Car,CLTC-C)3种台架测试循环工况下的碳排放因子。比较发现3种台架测试循环工况下的碳排放因子均高于实际道路行驶碳排放因子,其中WLTC下碳排放因子最高,其次是NEDC,再是CLTC-C,原因是加速度越大、车速越高的测试工况导致碳排放增加。展开更多
文摘为探讨RPA对PFI汽油车在RDE试验中排放特性影响,采用了AVL-M. O. V. E.轻型车便携式排放测试系统PEMS对某电控进气道多点喷射汽油车分别在西宁高海拔地区进行了平缓、一般和激烈3种驾驶行为下的RDE排放试验研究,试验中未对发动机进行任何改动。结果表明:国标对RDE试验要求的RPA值范围较大,不同RPA值对应的驾驶行为直接影响RDE排放试验结果。RDE冷起动阶段对PN和CO排放的影响较大,且对PN排放的影响大于对气体污染物排放的影响。CO和PN排放随RPA值的变化无明显变化规律; NOx和CO2排放量与RPA值呈现正相关。CF(NOx)> CF(CO)> CF(PN),且CF(NOx)随着RPA值的增加,变化幅度明显增大,高原条件下进行RDE试验,需要注意NOx排放。RPA值影响CO2排放在特性曲线图上的分布,RPA值越大,CO2排放在特性曲线图上的分布越靠近上公差。
文摘The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15+EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are -0.42—2.99, -0.32 —0.81 and -0.11—11 with FTP75 testing, 0.11—1.29, -0.77—0.64 and 0.47—10.50 with Beijing 1997 testing and 0.25—1.83, 0.09—0.75 and -0.58—1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI+TWC vehicles' pollution emission factors decrease with different degree. The retrofit vehicle(Santana) will reduce 4.44%—58.44% CO, -4.95%—36.79% NOx, -32.32%—33.89% HC, and -9.39%—14.29% fuel consumption, and especially that the MPI+TWC vehicle will decrease CO by 82.48%—91.76%, NOx by 44.87%—92.79%, HC by 90.00%—93.89% and fuel consumption by 5.44%—10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.
文摘研究轻型车辆碳排放测算方法,分析车辆碳排放与运行工况关系。基于车辆实际行驶污染物排放(Real Drive Emission,RDE)车载测试数据,以CO_(2)当量CO_(2e)代表碳排放,分析得出碳排放速率随车速、比功率(Vehicle Specific Power,VSP)增大而上升;运用BP(Back Propagation)神经网络算法建立车辆碳排放与车速、加速度、比功率多参数间非线性关系测算模型,计算得出世界轻型车测试循环(World Light Vehicle Test Cycle,WLTC)、新欧洲行驶循环(New European Driving Cycle,NEDC)和中国轻型商用车行驶工况(China Light-duty Vehicle Test Cycle-commercial Car,CLTC-C)3种台架测试循环工况下的碳排放因子。比较发现3种台架测试循环工况下的碳排放因子均高于实际道路行驶碳排放因子,其中WLTC下碳排放因子最高,其次是NEDC,再是CLTC-C,原因是加速度越大、车速越高的测试工况导致碳排放增加。